不同发火电压下工业电子雷管引火药头发火时间试验

关佳佳 李洪伟 杨霖 梁昊 刘艳红 卢少宝 朱福元

关佳佳, 李洪伟, 杨霖, 梁昊, 刘艳红, 卢少宝, 朱福元. 不同发火电压下工业电子雷管引火药头发火时间试验[J]. 高压物理学报, 2025, 39(12): 125201. doi: 10.11858/gywlxb.20251101
引用本文: 关佳佳, 李洪伟, 杨霖, 梁昊, 刘艳红, 卢少宝, 朱福元. 不同发火电压下工业电子雷管引火药头发火时间试验[J]. 高压物理学报, 2025, 39(12): 125201. doi: 10.11858/gywlxb.20251101
GUAN Jiajia, LI Hongwei, YANG Lin, LIANG Hao, LIU Yanhong, LU Shaobao, ZHU Fuyuan. Experimental Study on Ignition Time of Industrial Electronic Detonator Ignition Head under Different Ignition Voltages[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 125201. doi: 10.11858/gywlxb.20251101
Citation: GUAN Jiajia, LI Hongwei, YANG Lin, LIANG Hao, LIU Yanhong, LU Shaobao, ZHU Fuyuan. Experimental Study on Ignition Time of Industrial Electronic Detonator Ignition Head under Different Ignition Voltages[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 125201. doi: 10.11858/gywlxb.20251101

不同发火电压下工业电子雷管引火药头发火时间试验

doi: 10.11858/gywlxb.20251101
基金项目: 安徽高校自然科学研究项目(2022AH050838)
详细信息
    作者简介:

    关佳佳(1987-),男,硕士研究生,主要从事电子雷管研究. E-mail:2634473849@qq.com

    通讯作者:

    杨 霖(2001-),男,硕士研究生,主要从事电子雷管研究. E-mail:2959470747@qq.com

  • 中图分类号: TJ453; O521.9

Experimental Study on Ignition Time of Industrial Electronic Detonator Ignition Head under Different Ignition Voltages

  • 摘要: 针对电子雷管发火电容受冲击后出现掉电可能导致其因发火能量不足而无法可靠起爆这一工程实际问题,通过高速纹影测试系统,研究了不同发火电压下金属桥膜型及桥丝型引火药头的发火时间,明确输入引火药头的初始能量对其热分解阶段、火焰增长期、火焰持续期时间的影响,得到了2种引火药头发火总时间与发火电压、发火能量的关系。结果表明:13~21 V区间内,引火药头的发火总时间随电压的变化率呈先减小后增大的趋势;随着发火电压的增大,金属桥膜型引火药头的热分解期、火焰增长期、火焰持续期的时间降幅分别为66.2%、76.6%、15.0%,桥丝型引火药头在3个阶段的时间降幅分别为28.0%、39.2%、30.0%,且金属桥膜型引火药头各阶段的发火时间较桥丝型短;当发火电容剩余能量处于1.9~4.9 mJ时,金属桥膜型和桥丝型引火药头的发火一致性及发火精度受到影响;当剩余能量小于1.9 mJ时,金属桥膜型引火药头因发火能量不足导致瞎火。研究结果将为电子雷管发火裕度设计提供依据,有助于降低小孔距爆破中电子雷管的拒爆率。

     

  • 图  金属桥膜型引火药头

    Figure  1.  Metal bridge ignition head

    图  桥丝型引火药头

    Figure  2.  Bridge-wire ignition head

    图  高速纹影测试系统示意图

    Figure  3.  Schematic diagram of high-speed schlieren test system

    图  Ⅰ型引火药头发火过程

    Figure  4.  Ignition process of type Ⅰ ignition head

    图  Ⅱ型引火药头发火过程

    Figure  5.  Ignition process of type Ⅱ ignition head

    图  Ⅰ型引火药头各阶段发火时间对比

    Figure  6.  Comparison of ignition times at each stage of type Ⅰ ignition head

    图  Ⅱ型引火药头各阶段发火时间对比

    Figure  7.  Comparison of ignition times at each stage of type Ⅱ ignition head

    图  2种类型引火药头的发火时间误差

    Figure  8.  Ignition time error for two types of ignition head

    图  发火时间与发火能量的关系

    Figure  9.  Relationship between ignition time and ignition energy

    表  1  不同电压对应的引火药头发火能量

    Table  1.   Ignition energy of ignition corresponding to different voltages

    Ignition voltage/V Ignition energy/mJ Ignition time of type Ⅰ/ms Ignition time of type Ⅱ/ms
    13.14 1.90 336.51 126.62
    13.98 2.15 317.61 123.54
    14.77 2.40 301.16 119.29
    15.52 2.65 295.63 114.81
    16.24 2.90 286.45 109.63
    16.92 3.15 283.82 107.15
    17.58 3.40 279.15 106.76
    18.22 3.65 276.69 106.12
    18.83 3.90 274.95 105.73
    19.42 4.15 268.46 102.35
    20.00 4.40 257.17 101.75
    20.56 4.65 235.42 94.16
    21.11 4.90 216.07 82.16
    下载: 导出CSV
  • [1] 孙金梦. 数码电子雷管点火模块的研究 [D]. 南京: 南京理工大学, 2023.

    SUN J M. Study on ignition module of digital electronic detonator [D]. Nanjing: Nanjing University of Science and Technology, 2023.
    [2] 杨文, 岳彩新, 宋家良, 等. 工业电子雷管抗冲击性能试验研究 [J]. 火工品, 2022(2): 16–19. doi: 10.3969/j.issn.1003-1480.2022.02.004

    YANG W, YUE C X, SONG J L, et al. Experimental research on the impact resistance of industrial electronic detonators [J]. Initiators & Pyrotechnics, 2022(2): 16–19. doi: 10.3969/j.issn.1003-1480.2022.02.004
    [3] TEVEROVSKY A. Effect of mechanical stresses on characteristics of chip tantalum capacitors [J]. IEEE Transactions on Device and Materials Reliability, 2007, 7(3): 399–406. doi: 10.1109/TDMR.2007.907289
    [4] 王家乐, 李洪伟, 王小兵, 等. 冲击载荷作用下钽电容的电压瞬变特性及微观机理 [J]. 爆炸与冲击, 2024, 44(4): 043101. doi: 10.11883/bzycj-2023-0232

    WANG J L, LI H W, WANG X B, et al. Voltage transient characteristics and microscopic mechanism of tantalum capacitors under impact load [J]. Explosion and Shock Waves, 2024, 44(4): 043101. doi: 10.11883/bzycj-2023-0232
    [5] LENG Z D, FAN Y, LU W B, et al. Failure mechanisms of electronic detonators subjected to high impact loading in rock drilling and blasting [J]. International Journal of Coal Science & Technology, 2025, 12(1): 10. doi: 10.1007/s40789-025-00749-6
    [6] REN D M, HOU J H, DUAN J R, et al. Failure mode analysis of electronic detonator under high overload condition [J]. FirePhysChem, 2022, 2(2): 199–205. doi: 10.1016/j.fpc.2022.02.001
    [7] 杨文. 工业电子雷管抗冲击性能研究 [D]. 北京: 煤炭科学研究总院, 2022.

    YANG W. Research on impact resistance performance of industrial electronic detonator [D]. Beijing: China Coal Research Institute, 2022.
    [8] 孙金梦, 卫延安, 武寿昌. 灼热桥丝式电点火药头的发火时间变化规律研究 [J]. 爆破器材, 2022, 51(6): 27–31. doi: 10.3969/j.issn.1001-8352.2022.06.005

    SUN J M, WEI Y A, WU S C. Ignition time variation of hot bridge-wire electric fusehead [J]. Explosive Materials, 2022, 51(6): 27–31. doi: 10.3969/j.issn.1001-8352.2022.06.005
    [9] 杨刚, 彭星新, 孙热, 等. 桥丝式电点火头发火时间一致性试验研究 [J]. 爆破器材, 2024, 53(4): 23–27. doi: 10.3969/j.issn.1001-8352.2024.04.004

    YANG G, PENG X X, SUN R, et al. Experimental study on consistency of ignition time of the bridge wire fuse head [J]. Explosive Materials, 2024, 53(4): 23–27. doi: 10.3969/j.issn.1001-8352.2024.04.004
    [10] 杨霖, 李洪伟, 梁昊, 等. 爆炸冲击作用对电子雷管引火药头损伤及发火时间的影响 [J]. 高压物理学报, 2025, 39(6): 065301. doi: 10.11858/gywlxb.20240945

    YANG L, LI H W, LIANG H, et al. Effect of explosive impact on ignition head damage and ignition time of electronic detonator [J]. Chinese Journal of High Pressure Physics, 2025, 39(6): 065301. doi: 10.11858/gywlxb.20240945
    [11] 马健行, 黄寅生, 毛立. 两种电子雷管用点火元件的制备及研究 [J]. 火工品, 2022(1): 15–19. doi: 10.3969/j.issn.1003-1480.2022.01.004

    MA J X, HUANG Y S, MAO L. Preparation and research of two kinds of electric matchhead for electronic detonator [J]. Initiators & Pyrotechnics, 2022(1): 15–19. doi: 10.3969/j.issn.1003-1480.2022.01.004
    [12] 任泰昌, 裴霈, 朱方杰. 硫氰酸铅在电子引火元件中的应用探究 [J]. 化工管理, 2019(22): 146–147. doi: 10.3969/j.issn.1008-4800.2019.22.092

    REN T C, PEI P, ZHU F J. Application of lead thiocyanate in electronic ignition components [J]. Chemical Enterprise Management, 2019(22): 146–147. doi: 10.3969/j.issn.1008-4800.2019.22.092
    [13] 郑星, 黄海莹, 毛勇建, 等. 基于高速纹影技术的爆炸冲击波图像测量研究 [J]. 光学精密工程, 2022, 30(18): 2187–2194. doi: 10.37188/OPE.20223018.2187

    ZHENG X, HUANG H Y, MAO Y J, et al. Research on image measurement of explosion shock wave based on high speed schlieren technology [J]. Optics and Precision Engineering, 2022, 30(18): 2187–2194. doi: 10.37188/OPE.20223018.2187
    [14] GRÜNINGER M, TOEDTER O, KOCH T. Optical analysis of ignition sparks and inflammation using background-oriented schlieren technique [J]. Energies, 2024, 17(6): 1274. doi: 10.3390/en17061274
    [15] JÓZSA V, MALÝ M, FÜZESI D, et al. Schlieren analysis of non-mild distributed combustion in a mixture temperature-controlled burner [J]. Energy, 2023, 273: 127230. doi: 10.1016/j.energy.2023.127230
    [16] 焦清介, 赵婉君, 常英珂, 等. 电爆桥膜换能元设计研究 [J]. 火工品, 2023(6): 14–20. doi: 10.3969/j.issn.1003-1480.2023.06.003

    JIAO Q J, ZHAO W J, CHANG Y K, et al. Research on the design of exploding bridge film energy convertor [J]. Initiators & Pyrotechnics, 2023(6): 14–20. doi: 10.3969/j.issn.1003-1480.2023.06.003
    [17] 王家乐. 电子雷管电容的冲击失效规律及失效机理 [D]. 淮南: 安徽理工大学, 2024.

    WANG J L. Impact failure law and failure mechanism of electronic detonator capacitors [D]. Huainan: Anhui University of Science and Technology, 2024.
    [18] 李洪伟, 王家乐, 梁昊, 等. 爆炸冲击对电子雷管发火电容释能特性的影响 [J]. 兵工学报, 2025, 46(3): 240221. doi: 10.12382/bgxb.2024.0221

    LI H W, WANG J L, LIANG H, et al. Effect of explosion shock on the energy release characteristics of ignition capacitance of electronic detonator [J]. Acta Armamentarii, 2025, 46(3): 240221. doi: 10.12382/bgxb.2024.0221
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  53
  • PDF下载量:  11
出版历程
  • 收稿日期:  2025-05-30
  • 修回日期:  2025-06-21
  • 网络出版日期:  2025-06-24
  • 刊出日期:  2025-12-05

目录

    /

    返回文章
    返回