双孔爆破的损伤破坏和分形研究

霍飞 李祥龙 王建国 崔光久 侯猛 孔祥杰 孙方艺雄

霍飞, 李祥龙, 王建国, 崔光久, 侯猛, 孔祥杰, 孙方艺雄. 双孔爆破的损伤破坏和分形研究[J]. 高压物理学报, 2025, 39(12): 125303. doi: 10.11858/gywlxb.20251093
引用本文: 霍飞, 李祥龙, 王建国, 崔光久, 侯猛, 孔祥杰, 孙方艺雄. 双孔爆破的损伤破坏和分形研究[J]. 高压物理学报, 2025, 39(12): 125303. doi: 10.11858/gywlxb.20251093
HUO Fei, LI Xianglong, WANG Jianguo, CUI Guangjiu, HOU Meng, KONG Xiangjie, SUN Fangyixiong. Damage and Fractal Analysis of Double-Hole Blasting[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 125303. doi: 10.11858/gywlxb.20251093
Citation: HUO Fei, LI Xianglong, WANG Jianguo, CUI Guangjiu, HOU Meng, KONG Xiangjie, SUN Fangyixiong. Damage and Fractal Analysis of Double-Hole Blasting[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 125303. doi: 10.11858/gywlxb.20251093

双孔爆破的损伤破坏和分形研究

doi: 10.11858/gywlxb.20251093
基金项目: 国家自然科学基金(52274083);云南省“兴滇英才支持计划”产学创新人才项目(KKXY202421005)
详细信息
    作者简介:

    霍 飞(2000-),男,硕士研究生,主要从事工程爆破研究. E-mail:2096725616@qq.com

    通讯作者:

    李祥龙(1981-),男,博士,教授,主要从事岩石破碎及工程爆破研究. E-mail:lxl00014002@163.com

  • 中图分类号: O521.9; TD235

Damage and Fractal Analysis of Double-Hole Blasting

  • 摘要: 采用理论分析和模型试验研究双孔爆破介质的损伤破坏特征,基于双孔爆破模型的弹性力学平面应变问题解析,建立了双孔爆破动态应力场演化的理论模型。通过模型试验研究了不同炮孔间距下双孔爆破的损伤特征,通过分区和分形维数定量表征了炮孔周围不同区域的损伤特征。结果表明:随着炮孔间距的增大,应力波叠加作用降低,压碎区半径增大,裂纹数先减少后增多,主裂纹的平均长度逐渐增大;炮孔连线方向的损伤逐渐减小,垂直于炮孔连线方向的损伤逐渐增大;小孔距有利于裂纹孔间贯穿和沿炮孔连线方向扩展;试件左部和右部区域的损伤变量逐渐增大,中部区域的损伤变量在炮孔间距为50 mm时出现最小值;区域Ⅰ和区域Ⅱ的损伤变量先减小后增大,区域Ⅲ的损伤变量逐渐减小;在极坐标系下,区域Ⅰ的损伤均匀分布,区域Ⅱ的损伤由椭圆形分布逐渐向圆形分布转变。根据损伤区域分形维数与损伤变量的关系,构建了聚甲基丙烯酸甲酯材料双孔爆破分形损伤模型。

     

  • 图  双孔爆破模型

    Figure  1.  Double-hole blasting model

    图  炮孔周围环向应力的演化规律

    Figure  2.  Evolution of hoop stress around the blast hole

    图  孔间环向应力峰值曲线

    Figure  3.  Peak hoop stress curve between holes

    图  试验过程及结果分析

    Figure  4.  Test process and result analysis

    图  试件每条裂纹长度的统计结果

    Figure  5.  Statistical results length of each crack in the specimen

    图  试件压碎区半径及裂纹平均长度

    Figure  6.  Radius of the crushing zone of the specimen and the average length of the crack

    图  各试件不同方向的损伤范围

    Figure  7.  Damage extent of each specimen in different directions

    图  试件不同区域的分形维数拟合曲线

    Figure  8.  Fractal dimension fitting curves for different regions of each specimen

    图  各试件炮孔连线方向的分区损伤变量

    Figure  9.  Damage variables of each specimen in the direction of the gunnel line

    图  10  各试件径向分区的损伤变量

    Figure  10.  Damage variable in radial direction for each specimen

    图  11  双孔爆破区域Ⅰ和区域Ⅱ的损伤变量

    Figure  11.  Damage variables of area Ⅰ and area Ⅱ in double-hole blasting

    图  12  双孔爆破损伤变量与分形维数的关系

    Figure  12.  Relationship between damage variables and fractal dimensions for two-hole blasting

    表  1  试件损伤破坏结果

    Table  1.   Damage and failure results of specimens

    Specimen No. Crack penetration type Radius of crushing zone/mm Number of cracks Average crack
    length/mm
    Left side Right side Left side Right side
    S-1 Penetrated 9.61 9.35 13 13 16.98
    S-2 Penetrated 9.99 9.98 13 11 18.90
    S-3 Penetrated 10.21 10.08 8 5 18.55
    S-4 Not penetrated 12.72 12.12 13 12 19.32
    S-5 Not penetrated 12.83 13.13 11 15 20.50
    下载: 导出CSV

    表  2  试件不同区域的损伤变量

    Table  2.   Damage variables in different areas of the specimen

    Specimen No. Damage variables in different regions
    Left part Middle part Right part Left area Ⅰ Right area Ⅰ Left area Ⅱ Right area Ⅱ Area Ⅲ
    S-1 0.108 41 0.217 40 0.143 84 0.944 65 0.960 75 0.226 13 0.308 11 0.029 32
    S-2 0.155 12 0.217 06 0.114 41 0.959 40 0.882 10 0.282 54 0.202 86 0.020 43
    S-3 0.155 94 0.156 67 0.138 33 0.909 68 0.916 03 0.205 54 0.177 00 0.026 95
    S-4 0.187 96 0.221 13 0.173 87 0.995 47 0.956 00 0.211 06 0.191 31 0.019 31
    S-5 0.226 17 0.192 44 0.258 36 0.942 80 0.996 45 0.178 02 0.292 02 0.013 48
    下载: 导出CSV
  • [1] 杨建华, 彭超, 叶志伟, 等. 深部岩体爆破冲击波能量分布特征 [J]. 兵工学报, 2024, 45(6): 1735–1746. doi: 10.12382/bgxb.2023.0254

    YANG J H, PENG C, YE Z W, et al. Energy distribution of shock wave in deep rock mass blasting [J]. Acta Armamentarii, 2024, 45(6): 1735–1746. doi: 10.12382/bgxb.2023.0254
    [2] 王家来, 徐颖. 应变波对岩体的损伤作用和爆生裂纹传播 [J]. 爆炸与冲击, 1995, 15(3): 212–216. doi: 10.11883/1001-1455(1995)03-0212-5

    WANG J L, XU Y. Damage effect in rock by strain waves and crack propagation by explosion [J]. Explosion and Shock Waves, 1995, 15(3): 212–216. doi: 10.11883/1001-1455(1995)03-0212-5
    [3] 杨小林, 王树仁. 岩石爆破损伤断裂的细观机理 [J]. 爆炸与冲击, 2000, 20(3): 247–252. doi: 10.11883/1001-1455(2000)03-0247-6

    YANG X L, WANG S R. Meso-mechanism of damage and fracture on rock blasting [J]. Explosion and Shock Waves, 2000, 20(3): 247–252. doi: 10.11883/1001-1455(2000)03-0247-6
    [4] SAWMLIANA C. Mechanism of rock breakage by blasting, influences of rock and explosive properties on blast results [J]. TAI Journal, 2012, 1(1): 33–38.
    [5] 杨仁树, 丁晨曦, 王雁冰, 等. 爆炸应力波与爆生气体对被爆介质作用效应研究 [J]. 岩石力学与工程学报, 2016, 35(Suppl 2): 3501–3506. doi: 10.13722/j.cnki.jrme.2016.0066

    YANG R S, DING C X, WANG Y B, et al. Action-effect study of medium under loading of explosion stress wave and explosion gas [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Suppl 2): 3501–3506. doi: 10.13722/j.cnki.jrme.2016.0066
    [6] QIU S, ELIASSON V. Interaction and coalescence of multiple simultaneous and non-simultaneous blast waves [J]. Shock Waves, 2016, 26(3): 287–297. doi: 10.1007/s00193-015-0567-2
    [7] LI X H, ZHU Z M, WANG M, et al. Numerical study on the behavior of blasting in deep rock masses [J]. Tunnelling and Underground Space Technology, 2021, 113: 103968. doi: 10.1016/j.tust.2021.103968
    [8] 范勇, 孙金山, 贾永胜, 等. 高地应力硐室光面爆破孔间应力相互作用与成缝机制 [J]. 岩石力学与工程学报, 2023, 42(6): 1352–1365. doi: 10.13722/j.cnki.jrme.2022.1127

    FAN Y, SUN J S, JIA Y S, et al. Stress interaction and crack penetration mechanism between smooth blasting holes for tunnel excavation under high in-situ stress [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(6): 1352–1365. doi: 10.13722/j.cnki.jrme.2022.1127
    [9] 马泗洲, 蒋海明, 刘科伟, 等. 地应力对岩体预裂爆破成缝过程的影响 [J]. 爆炸与冲击, 2025, 45(9): 095201.

    MA S Z, JIANG H M, LIU K W, et al. Effect of in-situ stress on fracture formation process of rock mass in presplit blasting [J]. Explosion and Shock Waves, 2025, 45(9): 095201.
    [10] 李潜, 李海波, 傅帅旸, 等. 高地应力下双孔爆破成缝最优孔间距研究 [J]. 岩石力学与工程学报, 2025, 44(3): 678–690. doi: 10.3724/1000-6915.jrme.2024.0545

    LI Q, LI H B, FU S Y, et al. Study on the most optimistic hole spacing for double-hole blasting under high in-situ stresses [J]. Chinese Journal of Rock Mechanics and Engineering, 2025, 44(3): 678–690. doi: 10.3724/1000-6915.jrme.2024.0545
    [11] ZHOU Z Q, MA J, WANG J G, et al. Evolution characteristics of strain and displacement fields in double-hole short-delay blasting based on DIC [J]. Processes, 2024, 12(7): 1291. doi: 10.3390/pr12071291
    [12] HE C L, YANG J. Experimental and numerical investigations of dynamic failure process in rock under blast loading [J]. Tunnelling and Underground Space Technology, 2019, 83: 552–564. doi: 10.1016/j.tust.2018.08.047
    [13] MANDELBROT B B, WHEELER J A. The fractal geometry of nature [J]. American Journal of Physics, 1983, 51(3): 286–287. doi: 10.1119/1.13295
    [14] 谢和平. 分形-岩石力学导论 [M]. 北京: 科学出版社, 1996: 129−138.

    XIE H P. Introduction to fractal-rock mechanics [M]. Beijing: Science Press, 1996: 129−138.
    [15] 杨军, 王树仁. 岩石爆破分形损伤模型研究 [J]. 爆炸与冲击, 1996, 16(1): 5–10. doi: 10.11883/1001-1455(1996)01-0005-6

    YANG J, WANG S R. Study on fractal damage model of rock fragmentation by blasting [J]. Explosion and Shock Waves, 1996, 16(1): 5–10. doi: 10.11883/1001-1455(1996)01-0005-6
    [16] 祝文化, 明锋, 宋成梓. 爆破荷载作用下岩体损伤破坏的分形研究 [J]. 岩土力学, 2011, 32(10): 3131–3135. doi: 10.3969/j.issn.1000-7598.2011.10.040

    ZHU W H, MING F, SUN C Z. Fractal study of rock damage under blasting loading [J]. Rock and Soil Mechanics, 2011, 32(10): 3131–3135. doi: 10.3969/j.issn.1000-7598.2011.10.040
    [17] 杨仁树, 许鹏. 爆炸作用下介质损伤破坏的分形研究 [J]. 煤炭学报, 2017, 42(12): 3065–3071. doi: 10.13225/j.cnki.jccs.2017.0107

    YANG R S, XU P. Fractal study of media damage under blasting loading [J]. Journal of China Coal Society, 2017, 42(12): 3065–3071. doi: 10.13225/j.cnki.jccs.2017.0107
    [18] 杨仁树, 肖成龙, 李永亮, 等. 不耦合偏心装药结构爆破损伤破坏的分形研究 [J]. 振动与冲击, 2020, 39(12): 129–134. doi: 10.13465/j.cnki.jvs.2020.12.017

    YANG R S, XIAO C L, LI Y L, et al. A fractal study on blasting damage of an eccentric decouple charge structure [J]. Journal of Vibration and Shock, 2020, 39(12): 129–134. doi: 10.13465/j.cnki.jvs.2020.12.017
    [19] DING C X, YANG R S, LEI Z, et al. Fractal damage and crack propagation in decoupled charge blasting [J]. Soil Dynamics and Earthquake Engineering, 2021, 141: 106503. doi: 10.1016/j.soildyn.2020.106503
    [20] 马军, 汪旭光, 李祥龙, 等. 不耦合装药刻痕爆破裂纹的动态力学特征及损伤分形规律实验 [J]. 兵工学报, 2023, 44(12): 3676–3686. doi: 10.12382/bgxb.2022.1270

    MA J, WANG X G, LI X L, et al. Experiment on dynamic mechanical characteristics and damage fractal law of crack in decoupled charge scratch blasting [J]. Acta Armamentarii, 2023, 44(12): 3676–3686. doi: 10.12382/bgxb.2022.1270
    [21] 纪哲, 岳文豪, 苏洪, 等. 不同割缝宽度爆生裂纹扩展行为研究 [J]. 高压物理学报, 2024, 38(6): 064107. doi: 10.11858/gywlxb.20240733

    JI Z, YUE W H, SU H, et al. Study on the behavior of blasting crack propagation under different crack widths [J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064107. doi: 10.11858/gywlxb.20240733
    [22] FAN Y, LU W B, ZHOU Y H, et al. Influence of tunneling methods on the strainburst characteristics during the excavation of deep rock masses [J]. Engineering Geology, 2016, 201: 85–95. doi: 10.1016/j.enggeo.2015.12.015
    [23] LI X D, LIU K W, QIU T, et al. Numerical study on fracture control blasting using air-water coupling [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1): 29. doi: 10.1007/s40948-023-00546-y
    [24] YILMAZ O, UNLU T. Three dimensional numerical rock damage analysis under blasting load [J]. Tunnelling and Underground Space Technology, 2013, 38: 266–278. doi: 10.1016/j.tust.2013.07.007
    [25] ROSSMANITH H P, DAEHNKE A, NASMILLNER R E K, et al. Fracture mechanics applications to drilling and blasting [J]. Fatigue & Fracture of Engineering Materials & Structures, 1997, 20(11): 1617–1636. doi: 10.1111/j.1460-2695.1997.tb01515.x
    [26] 徐颖, 孟益平, 程玉生. 装药不耦合系数对爆破裂纹控制的试验研究 [J]. 岩石力学与工程学报, 2002, 21(12): 1843–1847. doi: 10.3321/j.issn:1000-6915.2002.12.020

    XU Y, MENG Y P, CHENG Y S. Study on control of blast crack by decoupling charge index [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12): 1843–1847. doi: 10.3321/j.issn:1000-6915.2002.12.020
    [27] 侯猛. 巷道掘进光面爆破参数的动焦散实验研究 [D]. 昆明: 昆明理工大学, 2021: 21−22.

    HOU M. Experimental study of the dynamic focal dispersion of the parameters of surface blasting in roadway excavation [D]. Kunming: Kunming University of Science and Technology, 2021: 21−22.
    [28] LOPES R, BETROUNI N. Fractal and multifractal analysis: a review [J]. Medical Image Analysis, 2009, 13(4): 634–649. doi: 10.1016/j.media.2009.05.003
    [29] SCHNEIDER C A, RASBAND W S, ELICEIRI K W. NIH Image to ImageJ: 25 years of image analysis [J]. Nature Methods, 2012, 9(7): 671–675. doi: 10.1038/nmeth.2089
    [30] SHI X, YANG P, GENG X Y, et al. Investigating static properties and microscopic pore structure characteristics of rubberized cement-soil under freeze-thaw cycles [J]. Construction and Building Materials, 2025, 458: 139524. doi: 10.1016/J.CONBUILDMAT.2024.139524
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  40
  • PDF下载量:  14
出版历程
  • 收稿日期:  2025-05-16
  • 修回日期:  2025-07-02
  • 录用日期:  2025-09-18
  • 网络出版日期:  2025-07-05
  • 刊出日期:  2025-12-05

目录

    /

    返回文章
    返回