块石形状及空间排布对遮弹性能影响的离散元研究

罗玉婷 赵婷婷 巨凯萱 王志勇

罗玉婷, 赵婷婷, 巨凯萱, 王志勇. 块石形状及空间排布对遮弹性能影响的离散元研究[J]. 高压物理学报, 2025, 39(12): 125101. doi: 10.11858/gywlxb.20251087
引用本文: 罗玉婷, 赵婷婷, 巨凯萱, 王志勇. 块石形状及空间排布对遮弹性能影响的离散元研究[J]. 高压物理学报, 2025, 39(12): 125101. doi: 10.11858/gywlxb.20251087
LUO Yuting, ZHAO Tingting, JU Kaixuan, WANG Zhiyong. Discrete Element Analysis on the Influence of Block Shape and Spatial Arrangement on Shielding Performance[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 125101. doi: 10.11858/gywlxb.20251087
Citation: LUO Yuting, ZHAO Tingting, JU Kaixuan, WANG Zhiyong. Discrete Element Analysis on the Influence of Block Shape and Spatial Arrangement on Shielding Performance[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 125101. doi: 10.11858/gywlxb.20251087

块石形状及空间排布对遮弹性能影响的离散元研究

doi: 10.11858/gywlxb.20251087
基金项目: 国家自然科学基金(12102294);山西省回国留学人员科研资助项目(2022-067);城市基础设施智能化浙江省工程研究中心开放基金(IUI2023-YB-04);先进材料与结构冲击安全山西省科技创新领军人才团队项目(202204051002006)
详细信息
    作者简介:

    罗玉婷(2001-),女,硕士研究生,主要从事块石离散元模拟研究. E-mail:2023510029@link.tyut.edu.cn

    通讯作者:

    赵婷婷(1989-),女,博士,副教授,主要从事离散元算法研究. E-mail:zhaotingting@tyut.edu.cn

  • 中图分类号: O347.7; O521.9

Discrete Element Analysis on the Influence of Block Shape and Spatial Arrangement on Shielding Performance

  • 摘要: 遮弹层作为现代军事防御体系的关键组成部分,可为后方重要目标提供防护。块石作为遮弹层的常用堆筑材料,其遮弹机理及性能优化研究具有重要意义。采用离散元球体单元和黏结破碎模型,模拟了块石在弹体冲击载荷下的破碎现象,并对刚性弹正侵彻密实堆积的块石结构进行了数值模拟,探讨了块石粒径、形状及空间排布特性对其抗侵彻性能的影响。结果表明:在侵彻过程中,块石通过碰撞和滑移耗散了90%以上的弹体动能;块石破碎数量与块石粒径呈负相关,与块石长短轴比呈正相关;采用单粒径块石多层位错排布时,弹体侵彻深度主要取决于侵彻阻力峰值,粒径为120 mm的圆形块石工况的侵彻阻力最大且侵彻深度最小;采用块石粒径沿迎弹面方向梯度递减的分层排布时,不能有效提高结构体的遮弹效果。研究结果可为理解块石遮弹机理提供参考。

     

  • 图  弹体示意图

    Figure  1.  Schematic diagram of projectile

    图  柔性簇替换成样

    Figure  2.  Cluster replacement sample

    图  接触黏结模型的力-位移定律

    Figure  3.  Force-displacement law of contact bond model

    图  数值计算模型

    Figure  4.  Numerical simulation model

    图  位错排布示意图

    Figure  5.  Schematic diagrams of staggered arrangement

    图  不同粒径块石工况下的侵彻阻力-侵彻深度曲线

    Figure  6.  Penetration resistance-penetration depth curves for blocks with different particle size

    图  工况C1的侵彻深度和弹体动能时程曲线

    Figure  7.  Time history curves of penetration depth and projectile kinetic energy for case C1

    图  密实堆积的块石结构骨架

    Figure  8.  Structural skeleton of densely packed block structure

    图  不同粒径块石工况下弹体的偏转角时程曲线

    Figure  9.  Time history curves of projectile deflection angle for blocks with different particle size

    图  10  工况C1的监测结果

    Figure  10.  Measurement results of case C1

    图  11  不同粒径块石工况下背弹面墙体的应力时程曲线

    Figure  11.  Time history curves of the stress on the rear wall for blocks with different particle size

    图  12  工况C1的能量演化规律

    Figure  12.  Energy evolution law of case C1

    图  13  工况C1的颗粒速度

    Figure  13.  Particle velocity of case C1

    图  14  能量-块石粒径曲线

    Figure  14.  Energy-block size curves

    图  15  不同粒径块石工况下的破碎区域

    Figure  15.  Breaking zone for blocks with different particle size

    图  16  不同形状块石工况下弹体的偏转角时程曲线

    Figure  16.  Time history curves of projectile deflection angle for blocks with different particle shape

    图  17  不同形状块石工况下的侵彻阻力-侵彻深度曲线

    Figure  17.  Penetration resistance-penetration depth curves for blocks with different particle shape

    图  18  不同形状块石工况下背弹面墙体的应力时程曲线

    Figure  18.  Time history curves of the stress on the rear wall for blocks with different particle shape

    图  19  能量-块石长短轴比曲线

    Figure  19.  Energy-block aspect ratio curves

    图  20  不同形状块石工况下的破碎区域

    Figure  20.  Breaking zone for blocks with different particle shape

    图  21  不同空间排布工况下的侵彻阻力-侵彻深度曲线

    Figure  21.  Penetration resistance-penetration depth curves for blocks with different spatial arrangement

    图  22  工况C6弹体侵彻轨迹

    Figure  22.  Trajectory of projectile penetration of case C6

    图  23  不同空间排布工况下的弹体偏转角时程曲线

    Figure  23.  Time history curves of projectile deflection angle for blocks with different spatial arrangement

    图  24  不同空间排布工况下背弹面墙体的应力时程曲线

    Figure  24.  Time history curves of the stress on the rear wall for blocks with different spatial arrangement

    图  25  工况C7中监测点处的颗粒速度

    Figure  25.  Particle velocity at the measuring point of case C7

    图  26  能量-块石空间排布曲线

    Figure  26.  Energy-block spatial arrangement curves

    图  27  不同空间排布工况下的破碎区域

    Figure  27.  Breaking zone for blocks with different spatial arrangement

    表  1  块石柔性簇模板

    Table  1.   Block cluster template

    Block cluster template Diameter/mm Aspect ratio Np Nc Z
    70 1.0 227 600 5.29
    120 1.0 884 2 006 4.54
    138 1.0 1 166 2 662 4.57
    175 1.0 1 879 4 362 4.64
    120 1.4 608 1 297 4.27
    120 2.0 442 925 4.19
    下载: 导出CSV

    表  2  数值模拟细观参数

    Table  2.   Meso-parameters of numerical simulation

    Rmin/mm Rmax/mm ρ/(kg·m−3) kn/(N·m−1) ks/(N·m−1) $\sigma_{\rm{n}} $/MPa $\sigma_{\rm{t}} $/MPa
    0.9 2.7 2 685 99×109 49.5×109 215±50 215±50
    下载: 导出CSV

    表  3  计算工况

    Table  3.   Calculated cases

    Case Block stone shape Block stone diameter/mm Spatial arrangement
    C1 Circle 70 Multi-layer staggered arrangement
    C2 Circle 120 Multi-layer staggered arrangement
    C3 Circle 138 Multi-layer staggered arrangement
    C4 Circle 175 Multi-layer staggered arrangement
    C5 Circle 70–175 Random distribution
    C6 Circle 70–175 Size gradient-decreasing
    C7 Circle 70–175 Size gradient-increasing
    E1 Ellipse with aspect ratio of 1.4 120 Multi-layer staggered arrangement
    E2 Ellipse with aspect ratio of 2.0 120 Multi-layer staggered arrangement
    下载: 导出CSV
  • [1] 穆朝民, 任辉启. 弹丸对钢筋混凝土中钢筋交汇处侵彻效应研究 [J]. 高压物理学报, 2010, 24(5): 351–358. doi: 10.11858/gywlxb.2010.05.006

    MU C M, REN H Q. Research on the effect of the projectile penetrating into the reinforced concrete targets at the intersection of the steel bar [J]. Chinese Journal of High Pressure Physics, 2010, 24(5): 351–358. doi: 10.11858/gywlxb.2010.05.006
    [2] 邓旭辉, 王达锋. 近爆作用下中空夹层超高性能钢管混凝土柱的抗爆性能 [J]. 高压物理学报, 2020, 34(6): 065201. doi: 10.11858/gywlxb.20200540

    DENG X H, WANG D F. Anti-blast performance of ultra-high performance concrete-filled double steel tubes under close in blast loading [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065201. doi: 10.11858/gywlxb.20200540
    [3] AUSTIM C F, HALSEY C C, CLODT R L. Protection systems development: ESLTR339 [R]. Florida, USA: Tyndall Air Force Base, 1982.
    [4] GEBARA J M, PAN J B, ANDERSON J B. 浅埋结构块石防弹层的有限块法分析 [J]. 王承树, 译. 防护工程, 1994(1): 84–93.

    GEBARA J M, PAN J B, ANDERSON J B. Finite block method analysis of the ballistic protection layer of shallow buried structural blocks [J]. Translated by WANG C S. Protective Engineering, 1994(1): 84–93.
    [5] ZHANG M H, SHIM V P W, LU G, et al. Resistance of high-strength concrete to projectile impact [J]. International Journal of Impact Engineering, 2005, 31(7): 825–841. doi: 10.1016/j.ijimpeng.2004.04.009
    [6] WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510–1 320 m/s [J]. Construction and Building Materials, 2015, 741: 88–200. doi: 10.1016/j.conbuildmat.2014.10.041
    [7] WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC [J]. International Journal of Impact Engineering, 2015, 84: 38–53. doi: 10.1016/j.ijimpeng.2015.05.007
    [8] 逄高伟, 方秦, 孔祥振, 等. WDU-34/B战斗部侵彻块石遮弹层的数值模拟研究 [J]. 防护工程, 2020, 42(4): 15–22. doi: 10.3969/j.issn.1674-1854.2020.04.002

    PANG G W, FANG Q, KONG X Z, et al. Numerical simulation of WDU-34/B warhead penetrating into rubble burster layer [J]. Protective Engineering, 2020, 42(4): 15–22. doi: 10.3969/j.issn.1674-1854.2020.04.002
    [9] FANG Q, ZHANG J H. 3D numerical modeling of projectile penetration into rock-rubble overlays accounting for random distribution of rock-rubble [J]. International Journal of Impact Engineering, 2014, 63: 118–128. doi: 10.1016/j.ijimpeng.2013.08.010
    [10] NIU Y Q, HUANG Z X, JIA X, et al. Research on the penetration performance of shaped charge jet into block stone concrete targets [J]. International Journal of Impact Engineering, 2024, 193: 105060. doi: 10.1016/J.IJIMPENG.2024.105060
    [11] 郭虎, 何丽灵, 陈小伟, 等. 球形颗粒遮弹层对高速侵彻弹体的作用机理 [J]. 爆炸与冲击, 2020, 40(10): 103301. doi: 10.11883/bzycj-2019-0428

    GUO H, HE L L, CHEN X W, et al. Penetration mechanism of a high-speed projectile into a shelter made of spherical aggregates [J]. Explosion and Shock Waves, 2020, 40(10): 103301. doi: 10.11883/bzycj-2019-0428
    [12] MANDAL J, GOEL M D, AGARWAL A K. Surface and buried explosions: an explorative review with recent advances [J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4815–4835. doi: 10.1007/s11831-021-09553-2
    [13] WANG G H, LU W B, YANG G D, et al. A state-of-the-art review on blast resistance and protection of high dams to blast loads [J]. International Journal of Impact Engineering, 2020, 139: 103529. doi: 10.1016/j.ijimpeng.2020.103529
    [14] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329–1364. doi: 10.1016/j.ijrmms.2004.09.011
    [15] 张涛, 蔚立元, 鞠明和, 等. 基于PFC3D-GBM的晶体-单元体尺寸比对花岗岩动态拉伸特性影响分析 [J]. 岩石力学与工程学报, 2022, 41(3): 468–478. doi: 10.13722/j.cnki.jrme.2021.0303

    ZHANG T, YU L Y, JU M H, et al. Study on the effect of grain size-particle size ratio on the dynamic tensile properties of granite based on PFC3D-GBM [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 468–478. doi: 10.13722/j.cnki.jrme.2021.0303
    [16] LI W Y, SHI C, ZHANG C. Numerical study on the effect of grain size on rock dynamic tensile properties using PFC-GBM [J]. Computational Particle Mechanics, 2024, 11(1): 481–489. doi: 10.1007/s40571-023-00634-6
    [17] FAN R, LUO Y, GONG H L, et al. Dynamic damage and fracture characteristics of granite under cyclic impact simulated with coupled finite-difference and discrete element methods [J]. Mechanics of Time-Dependent Materials, 2023, 27(2): 469–487. doi: 10.1007/s11043-023-09597-w,
    [18] 鞠明和, 陶泽军, 蔚立元, 等. 钢粒子迟滞重复冲击破岩硬岩损伤破裂特征研究 [J]. 岩土力学, 2024, 45(4): 1242–1255. doi: 10.16285/j.rsm.2023.0515

    JU M H, TAO Z J, YU L Y, et al. Damage and fracture characteristics of hard rocks caused by hysterisis and repeated impacts of steel particles [J]. Rock and Soil Mechanics, 2024, 45(4): 1242–1255. doi: 10.16285/j.rsm.2023.0515
    [19] 高飞, 邓树新, 张国凯, 等. 缩比模型弹侵彻岩石靶尺寸效应试验研究与理论分析 [J]. 兵工学报, 2023, 44(12): 3601–3612. doi: 10.12382/bgxb.2023.0014

    GAO F, DENG S X, ZHANG G K, et al. Experimental study and theoretical analysis of the size effect for scale model projectile penetrating into rock target [J]. Acta Armamentarii, 2023, 44(12): 3601–3612. doi: 10.12382/bgxb.2023.0014
    [20] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. doi: 10.1016/0734-743X(95)00048-F
    [21] 章涵, 向国梁, 王乐华, 等. 基于三维模型构建新方法的块石形状效应下S-RM宏细观剪切力学行为 [J]. 岩石力学与工程学报, 2022, 41(10): 2030–2044. doi: 10.13722/j.cnki.jrme.2021.0988

    ZHANG H, XIANG G L, WANG L H, et al. Effect of block form on the shear marco- and meso-mechanical behaviors of S-RM based on 3D novel modelling approach [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(10): 2030–2044. doi: 10.13722/j.cnki.jrme.2021.0988
    [22] 崔溦, 魏杰, 王超, 等. 考虑颗粒级配和形态的颗粒柱坍塌特性离散元模拟 [J]. 岩土工程学报, 2021, 43(12): 2230–2239. doi: 10.11779/CJGE202112009

    CUI W, WEI J, WANG C, et al. Discrete element simulation of collapse characteristics of particle column considering gradation and shape [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2230–2239. doi: 10.11779/CJGE202112009
    [23] ZHOU Z L, ZHAO Y, JIANG Y H, et al. Dynamic behavior of rock during its post failure stage in SHPB tests [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 184–196. doi: 10.1016/S1003-6326(17)60021-9
    [24] 赵婷婷, 冯云田. 大规模颗粒系统的精确缩尺和粗粒化离散元方法 [J]. 计算力学学报, 2022, 39(3): 365–372. doi: 10.7511/jslxCMGM202213

    ZHAO T T, FENG Y T. Exact scaling laws and coarse-grained discrete element modelling of large scale granular systems [J]. Chinese Journal of Computational Mechanics, 2022, 39(3): 365–372. doi: 10.7511/jslxCMGM202213
    [25] FENG Y T, OWEN D R J. Discrete element modelling of large scale particle systems-Ⅰ: exact scaling laws [J]. Computational Particle Mechanics, 2014, 1(2): 159–168. doi: 10.1007/s40571-014-0010-y
    [26] 张杰, 王志华, 王志勇, 等. 骨料对刚性弹正侵彻混凝土过程的影响机理 [J]. 中国科学: 技术科学, 2021, 51(3): 272–280. doi: 10.1360/SST-2020-0483

    ZHANG J, WANG Z H, WANG Z Y, et al. Impact mechanisms of aggregate on rigid projectile normal penetration into concrete target [J]. Scientia Sinica: Technologica, 2021, 51(3): 272–280. doi: 10.1360/SST-2020-0483
    [27] 徐飞. 普通混凝土骨料最小空隙率的探讨 [J]. 混凝土, 2004(3): 17–18. doi: 10.3969/j.issn.1002-3550.2004.03.006

    XU F. The research of minimal fraction void of concrete aggregate [J]. Concrete, 2004(3): 17–18. doi: 10.3969/j.issn.1002-3550.2004.03.006
    [28] NASR A A, WANG B Z, CHEN S G, et al. Monitoring the flow patterns of high performance self-compacting concrete in the voids of sloped rock-filled concrete structures [J]. Ain Shams Engineering Journal, 2025, 16(3): 103313. doi: 10.1016/j.asej.2025.103313
  • 加载中
图(27) / 表(3)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  47
  • PDF下载量:  14
出版历程
  • 收稿日期:  2025-05-06
  • 修回日期:  2025-06-19
  • 录用日期:  2025-09-22
  • 网络出版日期:  2025-06-20
  • 刊出日期:  2025-12-05

目录

    /

    返回文章
    返回