含泡沫铝吸能层的复合防爆墙的抗爆性能

牛怡宁 吴越 王天根 李淦

牛怡宁, 吴越, 王天根, 李淦. 含泡沫铝吸能层的复合防爆墙的抗爆性能[J]. 高压物理学报, 2025, 39(10): 104101. doi: 10.11858/gywlxb.20251027
引用本文: 牛怡宁, 吴越, 王天根, 李淦. 含泡沫铝吸能层的复合防爆墙的抗爆性能[J]. 高压物理学报, 2025, 39(10): 104101. doi: 10.11858/gywlxb.20251027
NIU Yining, WU Yue, WANG Tiangen, LI Gan. Anti-Explosion Performance of Composite Blast-Resistant Walls Containing an Aluminum Foam Energy-Absorbing Layer[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 104101. doi: 10.11858/gywlxb.20251027
Citation: NIU Yining, WU Yue, WANG Tiangen, LI Gan. Anti-Explosion Performance of Composite Blast-Resistant Walls Containing an Aluminum Foam Energy-Absorbing Layer[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 104101. doi: 10.11858/gywlxb.20251027

含泡沫铝吸能层的复合防爆墙的抗爆性能

doi: 10.11858/gywlxb.20251027
详细信息
    作者简介:

    牛怡宁(2002-),男,硕士研究生,主要从事高效毁伤理论与目标防护技术研究. E-mail:s202401056@st.nuc.edu.cn

    通讯作者:

    吴 越(1973-),男,博士,副教授,主要从事高效毁伤理论与目标防护技术研究.E-mail:wy@nuc.edu.cn

  • 中图分类号: O385; O521.9

Anti-Explosion Performance of Composite Blast-Resistant Walls Containing an Aluminum Foam Energy-Absorbing Layer

  • 摘要: 为研究泡沫铝吸能层对混凝土防爆墙抗爆性能的影响,采用LS-DYNA有限元软件模拟含泡沫铝吸能层复合防爆墙的抗爆动态响应,分析泡沫铝夹芯板结构参数、泡沫铝相对密度、爆炸载荷强度对其压缩变形规律和抗爆性能的影响。结果表明:在承受爆炸载荷作用时,复合防爆墙主要通过前面板局部弯曲变形和芯层塑性压溃变形吸收爆轰波能量;复合防爆墙的抗爆性能与芯层厚度呈正相关,与面板厚度呈负相关,但面板过薄时会因强度不足出现局部破裂失效;随着泡沫铝相对密度的增大,防爆墙的抗爆性能先显著提升后趋于平缓,当相对密度超过临界阈值后,材料波阻抗梯度降低,致使其防护效能显著削弱;7.5 kg装药、爆距为50 cm的爆炸加载条件下,芯层厚度6 cm、面板厚度0.5 cm、泡沫铝相对密度44%时能充分发挥材料的吸能特性,此时芯层的压缩比为73.3%,复合防爆墙的削波系数为77.5%;随着爆炸载荷增加,复合防爆墙的削波系数呈现“强化-平衡-失稳”的变化趋势。研究结果可为泡沫铝在抗爆防护中的应用提供参考。

     

  • 图  复合防爆墙示意图

    Figure  1.  Schematic diagram of composite blast wall

    图  复合防爆墙有限元模型

    Figure  2.  FEM of composite blast wall

    图  泡沫铝的应力-应变曲线[22]

    Figure  3.  Stress-strain curve of aluminum foam[22]

    图  夹芯板变形对比

    Figure  4.  Comparison of deformation of sandwich panels

    图  夹芯结构中钢板和泡沫铝板变形的对比[15]

    Figure  5.  Comparison of deformation of steel plate and foam aluminum plate in the sandwich structure[15]

    图  复合防爆墙的动态响应

    Figure  6.  Dynamic response of composite blast wall

    图  泡沫铝芯层动态响应

    Figure  7.  Dynamic response of aluminum foam core layer

    图  芯层厚度对压缩性能的影响

    Figure  8.  Effect of core thickness on compression performance

    图  芯层厚度对压力峰值的影响

    Figure  9.  Effect of core thickness on peak pressure

    图  10  芯层厚度对防护性能的影响

    Figure  10.  Effect of core thickness on protective performance

    图  11  面板厚度对压力峰值的影响

    Figure  11.  Effect of panel thickness on peak pressure

    图  12  面板厚度对防护性能的影响

    Figure  12.  Effect of panel thickness on protective performance

    图  13  h=0.3 cm时面板的破坏模式

    Figure  13.  Destruction mode of the panel when h=0.3 cm

    图  14  相对密度对压力峰值的影响

    Figure  14.  Effect of relative density on peak pressure

    图  15  相对密度对防护性能的影响

    Figure  15.  Effect of relative density on protective performance

    图  16  装药质量对压力峰值的影响

    Figure  16.  Effect of charge mass on peak pressure

    图  17  装药质量对芯层压缩量的影响

    Figure  17.  Effect of charge mass on core compression

    图  18  装药质量对防护性能的影响

    Figure  18.  Effect of charge mass on protective performance

    表  1  B炸药参数[18]

    Table  1.   B explosive parameters[18]

    ρ/(g·cm−3)vB/(m·s−1)pCJ/GPaA/GPaB/GPaR1R2ω
    1.787389034581.46.8014.11.00.35
    下载: 导出CSV

    表  2  空气材料参数[19]

    Table  2.   Air material parameters[19]

    ρ/(g·cm−3) C0 C1 C2 C3 C4 C5 C6
    0.00129 10−6 0 0 0 0 0.4 0.4
    下载: 导出CSV

    表  3  混凝土的HJC模型参数[20]

    Table  3.   HJC model parameters for concrete[20]

    ρ/(g·cm−3)G/GPafc/GPaCnCPCYT/GPanP
    2.4414.860.0480.791.60.0070.0040.61
    下载: 导出CSV

    表  4  钢材料参数[21]

    Table  4.   Steel material parameters[21]

    ρ/(g·cm−3)G/GPaE/GPaνY/GPaB0/GPancD1
    7.8377.762050.280.760.50.530.531.13
    下载: 导出CSV

    表  5  实验与数值模拟得到的最大变形量的对比

    Table  5.   Comparison of maximum deformation between experiment and simulation

    PartExperiment 2#Experiment 3#
    Experiment/mmSimulation/mmError/%Experiment/mmSimulation/mmError/%
    Steel plate17.019.21.337.435.84.3
    Aluminum foam22.521.54.436.538.14.4
    下载: 导出CSV
  • [1] 陈沫衡, 张典堂, 钱坤, 等. 防爆墙材料与结构研究进展 [J]. 工程爆破, 2021, 27(5): 93–101. doi: 10.19931/j.EB.20200095

    CHEN M H, ZHANG D T, QIAN K, et al. Research progress on materials and structures of explosion-proof walls [J]. Engineering Blasting, 2021, 27(5): 93–101. doi: 10.19931/j.EB.20200095
    [2] SMITH P D. Blast walls for structural protection against high explosive threats: a review [J]. International Journal of Protective Structures, 2010, 1(1): 67–84. doi: 10.1260/2041-4196.1.1.67
    [3] SOHN J M, KIM S J. Dynamic structural response characteristics of new concept blast walls under hydrocarbon explosions [J]. Latin American Journal of Solids and Structures, 2019, 16(2): e161. doi: 10.1590/1679-78255351
    [4] TAHA A K, GAO Z G, HUANG D H, et al. Numerical investigation of a new structural configuration of a concrete barrier wall under the effect of blast loads [J]. International Journal of Advanced Structural Engineering, 2019, 11(Suppl 1): 19–34. doi: 10.1007/s40091-019-00252-8
    [5] 宗瑞卿. 新型护栏型结构防爆墙研究 [D]. 天津: 天津大学, 2016: 55–58.

    ZONG R Q. Analysis of a new fence type blast wall for blast protection [D]. Tianjin: Tianjin University, 2016: 55–58.
    [6] ZHANG Y N, ZHANG S, HUANG L X, et al. Simulation study of crack extension in concrete blast walls under blast impacts [J]. Journal of Physics: Conference Series, 2024, 2755(1): 012015. doi: 10.1088/1742-6596/2755/1/012015
    [7] YANG G L, HUANG W J, FENG S. Antiexplosion performance of engineered cementitious composite explosion-proof wall [J]. Advances in Materials Science and Engineering, 2020, 2020: 1921960. doi: 10.1155/2020/1921960
    [8] 张雪梅, 顾文彬, 谢兴博, 等. 倾斜式防爆墙抗爆性能有限元数值分析与实验验证 [J]. 兵器装备工程学报, 2024, 45(7): 65–74. doi: 10.11809/bqzbgcxb2024.07.009

    ZHANG X M, GU W B, XIE X B, et al. Finite element numerical analysis and experimental verification of anti-explosion performance of inclined explosion-proof wall [J]. Journal of Ordnance Equipment Engineering, 2024, 45(7): 65–74. doi: 10.11809/bqzbgcxb2024.07.009
    [9] 张培文, 李鑫, 王志华, 等. 爆炸载荷作用下不同面板厚度对泡沫铝夹芯板动力响应的影响 [J]. 高压物理学报, 2013, 27(5): 699–703. doi: 10.11858/gywlxb.2013.05.007

    ZHANG P W, LI X, WANG Z H, et al. Effect of face sheet thickness on dynamic response of aluminum foam sandwich panels under blast loading [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 699–703. doi: 10.11858/gywlxb.2013.05.007
    [10] MUBAROK M A H, PRABOWO A R, MUTTAQIE T, et al. Dynamic structural assessment of blast wall designs on military-based vehicle using explicit finite element approach [J]. Mathematical Problems in Engineering, 2022, 2022(1): 5883404. doi: 10.1155/2022/5883404
    [11] 田立智, 宜晨虹, 汤铁钢, 等. 爆炸加载下蜂窝夹芯板和泡沫夹芯板变形行为实验研究 [J]. 爆破, 2024, 41(3): 232–239, 260. doi: 10.3963/j.issn.1001-487X.2024.03.027

    TIAN L Z, YI C H, TANG T G, et al. Experimental study on deformation behavior of honeycomb sandwich panel and foam sandwich panel under explosion loading [J]. Blasting, 2024, 41(3): 232–239, 260. doi: 10.3963/j.issn.1001-487X.2024.03.027
    [12] 吕永琪, 游晓红, 王录才. 泡沫铝夹芯板弯曲行为的仿真模拟 [J]. 金属功能材料, 2024, 31(3): 74–79. doi: 10.13228/j.boyuan.issn1005-8192.20240009

    LYU Y Q, YOU X H, WANG L C. Simulation of bending behavior of aluminum foam sandwich panel [J]. Metallic Functional Materials, 2024, 31(3): 74–79. doi: 10.13228/j.boyuan.issn1005-8192.20240009
    [13] 张文宽. 基于ANSYS/LS-DYNA的钢筋混凝土墙防爆性能数值研究 [D]. 湘潭: 湘潭大学, 2018: 44–49.

    ZHANG W K. Numerical study on explosion-proof performance of reinforced concrete explosion-proof wall based on ANSYS/LS-DYNA [D]. Xiangtan: Xiangtan University, 2018: 44–49.
    [14] 陈海洋. 拼装式防爆墙抗破片侵彻性能研究 [D]. 绵阳: 西南科技大学, 2023: 62–65.

    CHEN H Y. Research on the performance of penetration resistance for assembled explosion-proof wall under fragment impact [D]. Mianyang: Southwest University of Science and Technology, 2023: 62–65.
    [15] 顾文彬, 徐景林, 刘建青, 等. 多层泡沫铝夹芯板的抗爆性能 [J]. 含能材料, 2017, 25(3): 240–247. doi: 10.11943/j.issn.1006-9941.2017.03.011

    GU W B, XU J L, LIU J Q, et al. Blast-resistance performances of multilayers aluminum foam sandwich panels [J]. Chinese Journal of Energetic Materials, 2017, 25(3): 240–247. doi: 10.11943/j.issn.1006-9941.2017.03.011
    [16] 周炬, 苏金英. ANSYS WORKBENCH有限元分析实例详解 [M]. 北京: 人民邮电出版社, 2017: 382–385.

    ZHOU J, SU J Y. ANSYS WORKBENCH finite element analysis examples in detail [M]. Beijing: Posts & Telecommunications Press, 2017: 382–385.
    [17] 米双山, 刘东升, 徐亚卿. 基于流固耦合方法的爆炸仿真分析 [J]. 兵工自动化, 2008, 27(3): 33–35. doi: 10.3969/j.issn.1006-1576.2008.03.013

    MI S S, LIU D S, XU Y Q. Explosive simulation based on fluid-solid coupling method [J]. Ordnance Industry Automation, 2008, 27(3): 33–35. doi: 10.3969/j.issn.1006-1576.2008.03.013
    [18] 梁国祥, 曹红松. 熔铸装药过程缩孔缩松的预测及工艺优化 [J]. 兵器材料科学与工程, 2014, 37(2): 47–50. doi: 10.14024/j.cnki.1004-244x.2014.02.028

    LIANG G X, CAO H S. Prediction of shrinkage porosity and process optimization during explosive casting process [J]. Ordnance Material Science and Engineering, 2014, 37(2): 47–50. doi: 10.14024/j.cnki.1004-244x.2014.02.028
    [19] 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析 [M]. 北京: 清华大学出版社, 2005: 196–199.

    SHI D Y, LI Y C, ZHANG S M. Explicit dynamic analysis based on ANSYS/LS-DYNA 8.1 [M]. Beijing: Tsinghua University Press, 2005: 196–199.
    [20] 张凤国, 李恩征. 大应变、高应变率及高压强条件下混凝土的计算模型 [J]. 爆炸与冲击, 2002, 22(3): 198–202. doi: 10.11883/1001-1455(2002)03-0198-5

    ZHANG F G, LI E Z. A computational model for concrete subjected to large strains, high strain rates, and high pressures [J]. Explosion and Shock Waves, 2002, 22(3): 198–202. doi: 10.11883/1001-1455(2002)03-0198-5
    [21] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册 [M]. 北京: 机械工业出版社, 2020: 31–293.

    XIN C L, XUE Z Q, TU J, et al. Handbook of common material parameters for finite element analysis [M]. Beijing: China Machine Press, 2020: 31–293.
    [22] 王永刚. 泡沫铝动态力学性能与波传播特性研究 [D]. 宁波: 宁波大学, 2003: 47–48.

    WANG Y G. Study of dynamic mechanical properties and wave propagation characteristics of aluminum foam [D]. Ningbo: Ningbo University, 2003: 47–48.
    [23] CAI S P, LIU J, ZHANG P, et al. Experimental study on failure mechanisms of sandwich panels with multi-layered aluminum foam/UHMWPE laminate core under combined blast and fragments loading [J]. Thin-Walled Structures, 2021, 159: 107227. doi: 10.1016/j.tws.2020.107227
    [24] 张豪, 常白雪, 赵凯, 等. 三种蜂窝夹芯板的抗爆性能分析 [J]. 北京理工大学学报, 2022, 42(6): 557–566. doi: 10.15918/j.tbit1001-0645.2021.225

    ZHANG H, CHANG B X, ZHAO K, et al. Anti-explosion analysis of honeycomb sandwich panels with three kinds of core structures [J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 557–566. doi: 10.15918/j.tbit1001-0645.2021.225
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  138
  • PDF下载量:  53
出版历程
  • 收稿日期:  2025-02-17
  • 修回日期:  2025-03-26
  • 网络出版日期:  2025-04-01
  • 刊出日期:  2025-10-05

目录

    /

    返回文章
    返回