Abstract:
The dynamic response and energy absorption performance of foam aluminum sandwich tubes under lateral explosive loads were systematically investigated using a combination of experimental research and numerical simulation. A series of lateral explosion experiments were conducted using a ballistic pendulum system to analyze the effects of structural geometric parameters, foam aluminum density, and the explosive mass on deformation mode and blast resistance performance. Based on the experimental results, numerical simulations were performed to further compare the blast resistance performance of foam aluminum sandwich tubes and circular tube core sandwich tubes, comparing gradient and non-gradient designs of circular tube core sandwich tubes. The results show that, the final deformation of circular tube core sandwich tubes is greater than that of foam aluminum sandwich tubes, though the difference is not significant. Among the gradient circular tube core sandwich tubes, the configuration with the largest outer wall thickness and the thinnest middle layer exhibits the best improvement in blast resistance performance. Furthermore, the blast resistance performance of gradient circular tube core sandwich tubes is significantly superior to that of non-gradient structures.