Some Viewpoints on the Simulation Research of Energetic Materials under Extreme Conditions
-
摘要: 含能材料在军事、民用和航天等领域具有广泛应用,极端条件下其物理化学性质会发生显著变化。通过模拟研究预测和优化含能材料性能具有重要意义,包括性能预测、优化设计、安全评估、成本效率控制等。为此,综述了极端条件下含能材料的研究背景、基本性质、模拟研究方法及进展、关键问题以及相关实验研究进展。其中,详细介绍了量子力学、分子动力学、蒙特卡罗和有限元等模拟方法及其研究进展,阐述了高压、高温、激光作用和界面效应等极端条件下模拟研究的关键问题,并列举了含能材料在撞击感度、化学释能规律、3D打印、绿色电合成、爆轰机理和超高含能材料合成等方面的实验研究进展。通过遴选代表性研究,展示了模拟研究在实际问题中的应用和解决方案。同时,介绍了一些最新研究成果,以反映该领域的最新进展和未来趋势。此外,详细讨论了跨学科研究的实现方式以及含能材料在极端条件下的安全性问题,包括可能的风险和预防措施。Abstract: Energetic materials are widely used in military, civilian, aerospace and various other fields, and their physicochemical properties will change significantly under extreme conditions. It is of great significance to predict and optimize the performance of energetic materials through simulation research, including performance prediction, optimal design, safety assessment, cost and efficiency control, etc. This article reviews the research background, basic properties, methods of simulation research and progress, key issues and related experimental research progress of energetic materials under extreme conditions. Among them, simulation methods such as quantum mechanics, molecular dynamics, Monte Carlo and the finite element method and their research progress are introduced in detail, the key issues in simulation research under extreme conditions such as high pressure, high temperature, laser action and interface effect are elaborated, and the experimental research progress of energetic materials in impact sensitivity, chemical energy release law, 3D printing, green electro-synthesis, detonation mechanism and the synthesis of ultra-high energy materials is listed. By selecting representative research, the applications and solutions of simulation research in practical problems are demonstrated. At the same time, some of the latest research results are introduced to reflect the latest progress and future trends in this field. In addition, the implementation methods of interdisciplinary research and the safety issues of energetic materials under extreme conditions are discussed in detail, including possible risks and preventive measures.
-
Key words:
- energetic materials /
- extreme conditions /
- simulation research /
- high pressure /
- high temperature /
- laser action
-
[1] GOOS J G, KLERK P D. Energetic materials: from primary explosives to complex high-power charge systems [M]. New York: Springer, 2011. [2] MENIKOFF R, SHAW M. High-pressure shock compression of solids Ⅷ [M]. New York: Springer, 2006. [3] GAPONTSEV V V, LOMONOSOV I V. High energy materials: synthesis, characterization and applications [M]. New York: Wiley, 2015. [4] ZHANG Q, LEE J H. Computational methods in energetic materials research [M]. New York: Springer, 2010. [5] KUHN N J, BONAZZA R. Rock blasting and overbreak control [M]. Boca Raton: CRC Press, 2010. [6] LEE P S, TARVER C M. Physics of shock waves and high-temperature hydrodynamic phenomena [M]. New York: Springer, 2000. [7] KLER L A, et al. Energetic materials: an overview [J]. Propellants, Explosives, Pyrotechnics, 2007, 32(3): 126–130. [8] EGAN D L. Penetrating munitions [M]//CARLUCCI D E. Ballistics: Theory and Design of Guns and Ammunition. Boca Raton: CRC Press, 2007: 343–366. [9] COOPER P W. Explosives engineering [M]. Weinheim: Wiley-VCH, 1997. [10] LEWIS J S. Missile defense: the space and missile race [M]. Singapore: World Scientific Publishing Company, 2008. [11] FORNEY G P. Demolition and blasting techniques [M]. New York: McGraw-Hill Education, 2009. [12] TELFORD W M, GELDART L P, SHERIFF R E. Applied geophysics [M]. Cambridge: Cambridge University Press, 1990. [13] LEE R H, TRUEMAN D R. Underwater explosives [M]. New York: Springer, 2009. [14] ISHM International Society of High Mountain Medicine. Emergency avalanche rescue guidelines [M]. ISHM International Society of High Mountain Medicine, 2007. [15] ZHANG Q, LEE J H. Computational methods in energetic materials research [M]. New York: Springer, 2018. [16] MENIKOFF R, SHAW M S. Simulation of the detonation of energetic materials [J]. Annual Review of Physical Chemistry, 2006, 57: 21–40. [17] ZHU W, HUANG F. Understanding the structure-property relationships of energetic materials via high-throughput simulations [J]. Journal of Physical Chemistry C, 2017, 121(30): 16667–16675. [18] 肖慎修, 王崇愚, 陈天朗. 密度泛函理论的离散变分方法在化学和材料物理中的应用[M]. 北京: 科学出版社, 1998.XIAO S X, WANG C Y, CHEN T L. Application of the discrete variational method of density functional theory in chemistry and materials physics [M]. Beijing: Science Press, 1998. [19] KLIPPENSTEIN S J, HASE W L. Computational chemistry of energetic materials [M]//Energetic Materials: Synthesis, Characterization and Applications. New York: Springer, 2017: 29–58. [20] LI W G, HONG D, LI X H, et al. Prediction of chemical bond breaking in insensitive high-energy energetic materials at high temperature and pressure [J]. Journal Applied Physics, 2023, 133: 185103. doi: 10.1063/5.0148260 [21] MENIKOFF R, SHAW M S. High-pressure shock compression of solids Ⅶ [M]. New York: Springer, 2014. [22] MEYER R. Explosives engineering [M]. New York: Wiley, 2006. [23] SUTTON G P, BIBLARZ O. Rocket propulsion elements [M]. 9th ed. Hoboken: Wiley, 2017. [24] HURST G. Fireworks: the art, science, and technique [M]. New York: Fireworks Publishing, 2002. [25] 陈玉超. 含能纳米铝粉的制备与性能 [M]. 大连: 大连理工大学, 2015.CHEN Y C. Preparation and properties of energetic nano-aluminum powder [M]. Dalian: Dalian University of Technology, 2015. [26] 徐若千, 张俊林, 唐晓飞, 等. 含能聚合物制备研究最新进展 [J]. 火炸药学报, 2020, 5: 465–476.XU R Q, ZHANG J L, TANG X F, et al. Recent advances in the preparation of energetic polymers [J]. Chinese Journal of Explosives & Propellants, 2020, 5: 465–476. [27] KLAPÖTKE T M. Chemical aspects of explosives [M]. Berlin: Springer, 2011. [28] ZEL'DOVICH Y B, RAIZER Y P. Physics of shock waves and high-temperature hydrodynamic phenomena [M]. Mineola: Dover Publications, 2002. [29] 袁嘉男, 李建福, 王晓丽. 高能量密度氮的研究进展 [J]. 高压物理学报, 2024, 38(4): 040102. doi: 10.11858/gywlxb.20230797YUAN J N, LI J F, WANG X L. Research progress of high energy density nitrogen [J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040102. doi: 10.11858/gywlxb.20230797 [30] 翟航, 杨锦坭, 王建云, 等. 高压下主族金属富氮化合物的结构与含能特性 [J]. 高压物理学报, 2024, 38(4): 040101. doi: 10.11858/gywlxb.20230810ZHAI H, YANG J N, WANG J Y, et al. Structure and energy properties of nitrogen-rich compounds of main group metals under high pressure [J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040101. doi: 10.11858/gywlxb.20230810 [31] 王泽山. 含能材料概论 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2006.WANG Z S. Introduction to energetic materials [M]. Harbin: Harbin Institute of Technology Press, 2006. [32] GOOS J G, KLERK P D. Energetic materials: from primary explosives to complex high-power charge systems [M]. Berlin: Springer, 2010. [33] 杜永平. 强自旋轨道耦合体系的第一性原理研究 [D]. 南京: 南京大学, 2016.DU Y P. First-principles study of strong spin-orbit coupling systems[D]. Nanjing: Nanjing University, 2016. [34] RINDERSPACHER B C. Energetic materials optimization via constrained search: ADA618010 [R]. USA: Army Research Laboratory, 2015. [35] LIU H, ZHANG Y. Explosion and shock responses of energetic materials under laser irradiation [J]. Journal of Applied Physics, 2018, 114(20): 204901. [36] FRENKEL D, SMIT B. Understanding molecular simulation: from algorithms to applications [M]. San Diego: Academic Press, 2002. [37] CHEN M, WANG Q. Thermal effects and phase transitions of energetic materials under laser irradiation [J]. Journal of Applied Physics, 2018, 114(17): 174901. [38] LEVINE I N. Quantum computational chemistry [M]. New York: Pearson Education, 2009. [39] YAKUB L N. Polymerization in highly compressed nitrogen [J]. Low Temperature Physics, 2016, 42(1): 1–16. doi: 10.1063/1.4940225 [40] LIU S J, ZHAO L, YAO M G, et al. Novel all-nitrogen molecular crystals of aromatic N10 [J]. Advanced Science, 2020, 7(10): 1902320. doi: 10.1002/advs.201902320 [41] LANG Q, SUN Q, XU Y G, et al. From mono-rings to bridged bi-rings to caged bi-rings: a promising design strategy for all-nitrogen high-energy-density materials N10 and N12 [J]. New Journal of Chemistry, 2021, 45(14): 6379–6385. doi: 10.1039/D1NJ00522G [42] BONDARCHUK S V. Bipentazole (N10): a low-energy molecular nitrogen allotrope with high intrinsic stability [J]. The Journal of Physical Chemistry Letter, 2020, 11(14): 5544–5548. doi: 10.1021/acs.jpclett.0c01542 [43] 肖俊灵. 理论计算入门手册——分子模拟、量子化学、第一性原理、有限元, 最全概念总结 [EB/OL]. (2024-03-27)[2024-10-16]. https://blog.csdn.net/E_Magic_Cube/article/details/137096324. [44] 徐远骥. 强关联电子体系的连续时间量子蒙特卡洛方法 [D]. 长沙: 湖南大学, 2013.XU Y J. Continuous-time quantum Monte Carlo methods for strongly correlated electron systems [D]. Changsha: Hunan University, 2013. [45] 陈正隆, 徐为人, 汤立达. 分子模拟的理论与实践[M]. 北京: 化学工业出版社, 2007.CHEN Z L, XU W R, TANG L D. Molecular simulation of theory and practice [M]. Beijing: Chemical Industry Press, 2007. [46] ZHANG J D, GUO W, YAO Y G. Deep potential molecular dynamics study of Chapman-Jouguet detonation events of energetic materials [J]. The Journal of Physical Chemistry Letters, 2023, 14(32): 7141–7148. doi: 10.1021/acs.jpclett.3c01392 [47] 刘海, 李启楷, 何远航. 高速冲击压缩梯恩梯的分子动力学模拟 [J]. 力学学报, 2015, 47(1): 174–179. doi: 10.6052/0459-1879-14-141LIU H, LI Q K, HE Y H. Molecular dynamics simulations of high velocity shock compressed TNT [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 174–179. doi: 10.6052/0459-1879-14-141 [48] 许元刚. 唑类含能化合物的合成、结构与性能研究 [D]. 南京: 南京理工大学, 2020.XU Y G. Synthesis, structure and properties of azole-containing energetic compounds [D]. Nanjing: Nanjing University of Science and Technology, 2020. [49] 仇裕成, 王健, 同红海. 钝感HNS-Ⅳ炸药飞片冲击起爆数值仿真 [J]. 兵工自动化, 2017, 36(3): 59–62, 65. doi: 10.7690/bgzdh.2017.03.015QIU Y C, WANG J, TONG H H. Numerical simulation of flyer impacting initiation insensitive explosive HNS-Ⅳ [J]. Ordnance Industry Automation, 2017, 36(3): 59–62, 65. doi: 10.7690/bgzdh.2017.03.015 [50] 张蕾, 赵艳红, 姜胜利, 等. CL-20及其共晶炸药热力学稳定性与爆轰性能的理论研究 [J]. 含能材料, 2018, 26(6): 464–470. doi: 10.11943/j.issn.1006-9941.2018.06.001ZHANG L, ZHAO Y H, JIANG S L, et al. Theoretical study on thermodynamic stablity and detonation performance of CL-20 and its cocrystal [J]. Chinese Journal of Energetic Materials, 2018, 26(6): 464–470. doi: 10.11943/j.issn.1006-9941.2018.06.001 [51] 高加力. 新一代高精度生物大分子力场 [J]. 中国科学基金, 2018, 32(1): 103–106. doi: 10.16262/j.cnki.1000-8217.2018.01.024GAO J L. Next generation force fields for biological macromolecules [J]. Bulletin of National Natural Science Foundation of China, 2018, 32(1): 103–106. doi: 10.16262/j.cnki.1000-8217.2018.01.024 [52] 宋亮, 梅争, 张天成, 等. ReaxFF力场方法及其在含能材料中应用的研究进展 [J]. 火炸药学报, 2023, 46(6): 465–483. doi: 10.14077/j.issn.1007-7812.202211009SONG L, MEI Z, ZHANG T C, et al. Overview of ReaxFF force field method and it's application in energetic materials [J]. Chinese Journal of Explosives & Propellants, 2023, 46(6): 465–483. doi: 10.14077/j.issn.1007-7812.202211009 [53] 汪志诚. 蒙特卡洛方法在统计物理中的应用 [M]. 北京: 高等教育出版社, 2005.WANG Z C. Monte Carlo methods in statistical physics [M]. Beijing: Higher Education Press, 2005. [54] RUBENSTEIN B. Introduction to the variational Monte Carlo method in quantum chemistry and physics [M]//WU J. Variational Methods in Molecular Modeling: Molecular Modeling and Simulation. Singapore: Springer, 2017. [55] 周婷婷, 黄风雷. HMX不同晶型热膨胀特性及相变的ReaxFF分子动力学模拟 [J]. 物理学报, 2012, 61(24): 246501. doi: 10.7498/aps.61.246501ZHOU T T, HUANG F L. Thermal expansion behaviors and phase transitions of HMX polymorphs via ReaxFF molecular dynamics simulations [J]. Acta Physica Sinica, 2012, 61(24): 246501. doi: 10.7498/aps.61.246501 [56] 徐维森, 袁姣楠, 张秀清, 等. 含能材料的相变研究进展 [J]. 含能材料, 2018, 26(1): 21–33. doi: 10.11943/j.issn.1006-9941.2018.01.003XU W S, YUAN J N, ZHANG X Q, et al. Review on the phase transition of energetic materials [J]. Chinese Journal of Energetic Materials, 2018, 26(1): 21–33. doi: 10.11943/j.issn.1006-9941.2018.01.003 [57] REN W L, FU W Z, WU X J, et al. Towards the ground state of molecules via diffusion Monte Carlo on neural networks [J]. Nature Communications, 2023, 14(1): 1860. doi: 10.1038/S41467-023-37609-3 [58] 曾攀. 有限元方法 [M]. 北京: 清华大学出版社, 2008.ZENG P. The finite element method [M]. Beijing: Tsinghua University Press, 2008. [59] GUDI R D. Finite element analysis for heat transfer: theory and applications [M]. New York: Wiley, 2010. [60] 张程健. 带截锥形隔板聚能装药结构参数匹配的优化方法研究 [D]. 太原: 中北大学, 2020.ZHANG C J. Study on optimization method of structural parameter matching of shaped charge with truncated cone partition [D]. Taiyuan: North University of China, 2020. [61] 徐浩铭, 顾文彬, 唐勇, 等. 串联EFP装药结构参数优化实验研究 [J]. 爆炸与冲击, 2013, 33(3): 287–291. doi: 10.11883/1001-1455(2013)03-0287-05XU H M, GU W B, TANG Y, et al. Experimental study on structural parameter optimization of tandem explosively-formed projectile charges [J]. Explosion and Shock Waves, 2013, 33(3): 287–291. doi: 10.11883/1001-1455(2013)03-0287-05 [62] MAO X, MA T B, LIU J. Structure optimization of linear shaped charge based on different explosives [J]. Propellants, Explosives, Pyrotechnics, 2024, 49(5): e202300321. doi: 10.1002/prep.202300321 [63] 阚润哲, 聂建新, 刘正, 等. 复合装药密闭空间爆炸能量释放特性 [J]. 火炸药学报, 2022, 45(3): 377–382. doi: 10.14077/j.issn.1007-7812.202203020KAN R Z, NIE J X, LIU Z, et al. Energy release characteristics of composite charge in confined space explosion [J]. Chinese Journal of Explosives & Propellants, 2022, 45(3): 377–382. doi: 10.14077/j.issn.1007-7812.202203020 [64] 王铭. 会聚激光辐照金属约束含能材料结构的机理研究 [D]. 长春: 中国科学院大学, 2022.WANG M. Study on the mechanism of metal-constrained energetic materials irradiated by convergent laser [D]. Changchun: University of Chinese Academy of Sciences, 2022.
点击查看大图
计量
- 文章访问数: 10
- HTML全文浏览量: 2
- PDF下载量: 1