内置拉结筋聚脲涂覆砌体填充墙 近场抗爆性能和分析方法

李奕硕 汪维 徐赵威 张丛琨 张仲昊 张强

李奕硕, 汪维, 徐赵威, 张丛琨, 张仲昊, 张强. 内置拉结筋聚脲涂覆砌体填充墙 近场抗爆性能和分析方法[J]. 高压物理学报, 2025, 39(3): 034202. doi: 10.11858/gywlxb.20240892
引用本文: 李奕硕, 汪维, 徐赵威, 张丛琨, 张仲昊, 张强. 内置拉结筋聚脲涂覆砌体填充墙 近场抗爆性能和分析方法[J]. 高压物理学报, 2025, 39(3): 034202. doi: 10.11858/gywlxb.20240892
LI Yishuo, WANG Wei, XU Zhaowei, ZHANG Congkun, ZHANG Zhonghao, ZHANG Qiang. Close-Range Blast Resistance and Analytical Methods of Polyurea Coated Masonry Infill Walls with Built-in Tie Reinforcement[J]. Chinese Journal of High Pressure Physics, 2025, 39(3): 034202. doi: 10.11858/gywlxb.20240892
Citation: LI Yishuo, WANG Wei, XU Zhaowei, ZHANG Congkun, ZHANG Zhonghao, ZHANG Qiang. Close-Range Blast Resistance and Analytical Methods of Polyurea Coated Masonry Infill Walls with Built-in Tie Reinforcement[J]. Chinese Journal of High Pressure Physics, 2025, 39(3): 034202. doi: 10.11858/gywlxb.20240892

内置拉结筋聚脲涂覆砌体填充墙 近场抗爆性能和分析方法

doi: 10.11858/gywlxb.20240892
基金项目: 国家自然科学基金(11302261,11972201)
详细信息
    作者简介:

    李奕硕(2000-),男,硕士研究生,主要从事爆炸与冲击动力学研究. E-mail:liyishuo597@163.com

    通讯作者:

    汪 维(1983-),男,博士,教授,主要从事爆炸与冲击动力学研究. E-mail:wangwei7@nbu.edu.cn

    张 强(1991-),男,工程师,主要从事引战系统设计与毁伤评估研究. E-mail:1206682239@qq.com

  • 中图分类号: O383; O521.9

Close-Range Blast Resistance and Analytical Methods of Polyurea Coated Masonry Infill Walls with Built-in Tie Reinforcement

  • 摘要: 为研究在近距离爆炸载荷作用下内置拉结筋聚脲涂覆砌体填充墙的动力响应过程、毁伤特征和破坏模式,对不同聚脲涂覆方式和涂覆厚度的砌体墙进行了近距离空爆试验,结合LS-DYNA软件开展了数值模拟研究,基于砖墙、钢筋和聚脲涂层的抗力函数建立了改进的等效单自由度理论计算模型。等效单自由度模型可以准确地描述内置拉结筋涂覆聚脲加固墙体在近场爆炸载荷作用下的位移响应过程。在近场爆炸工况下,根据墙体的面外响应特征,总结出3种近场爆炸破坏模式:表面砂浆层损伤、开坑位错及背面鼓包、贯穿损伤。随着拉结筋数量的增加,墙体的抗爆性能增强,临界贯穿破坏装药量增多。

     

  • 图  填充墙内拉结筋布置示意图(单位:m)

    Figure  1.  Schematic diagram of tie bars in the infill walls (Unit: m)

    图  试验装置的迎爆面 (a) 和背爆面 (b)

    Figure  2.  Blast face (a) and back-blast face (b) of the test setup

    图  墙体三维模型结构示意图

    Figure  3.  Schematic diagram of 3D model structure of the wall

    图  爆炸试验后墙体的损伤

    Figure  4.  Walls damage after test blast

    图  试验与数值模拟得到的位移时程曲线

    Figure  5.  Displacement-time curves of test and simulation

    图  工况 J-3的试验结果与数值模拟结果对比

    Figure  6.  Comparison of test and simulation result for Case J-3

    图  墙体变形分布

    Figure  7.  Wall deformation

    图  沿宽度的面外挠度

    Figure  8.  Out-of-plane deflection along the width of the wall

    图  沿高度的面外挠度

    Figure  9.  Out-of-plane deflection along the height of the wall

    图  10  墙体结构弯曲变形示意图

    Figure  10.  Bending deformation diagram of wall structure

    图  11  工况J-2的试验、数值模拟和ESDOF计算结果对比

    Figure  11.  Comparison of test, simulation and ESDOF results for Case J-2

    图  12  墙体毁伤过程

    Figure  12.  Wall damage process

    图  13  不同装药量下的毁伤图像

    Figure  13.  Damage diagrams for different charges

    图  14  毁伤等级示意图

    Figure  14.  Schematic diagram of damage levels

    图  15  部分工况配筋图(单位:m)

    Figure  15.  Reinforcement drawings of partial test (Unit: m)

    图  16  拉结筋数量与贯穿损伤的临界TNT药量关系

    Figure  16.  Relationship between the number of tie reinforcement and the critical mass of TNT charge for penetration damage

    表  1  试验工况

    Table  1.   Test conditions

    TestRebar piecesPolyurea layer thickness/mmTNT mass/kgBlast distance/m
    Blast faceBack-blast face
    J-11433141.4
    J-21405141.4
    J-31405141.0
    下载: 导出CSV

    表  2  聚脲材料参数

    Table  2.   Material parameters of polyurea

    $E/{\text{MPa}}$ $ \nu $ $ \rho /(\text{g}\cdot {\text{cm}}^{{-3}}) $ $ \sigma\mathrm{_Y}/\text{MPa} $ ${E_{\rm t}}/{\text{MPa}}$
    230 0.4 1.19 1.38 3.5
    下载: 导出CSV

    表  3  砖块材料参数

    Table  3.   Material parameters of brick

    $ \rho /(\text{g}\cdot {\text{cm}}^{{-3}}) $ $ E/{\text{MPa}} $ $ \nu $ $ \sigma_{\mathrm{bc} {\rm}}/\text{MPa} $ $ R_{\mathrm{m} {\rm}}/\text{MPa} $
    1.8 8200 0.16 15.5 0.775
    下载: 导出CSV

    表  4  水泥砂浆材料参数

    Table  4.   Material parameters of mortar

    $ \rho /(\text{g}\cdot {\text{cm}}^{{-3}}) $ $ E/{\text{MPa}} $ $ \nu $ $ \sigma\mathrm{_{bc}}/\text{MPa} $ $ R_{\mathrm{m}}/\text{MPa} $
    2.1 4100 0.21 4.9 0.245
    下载: 导出CSV

    表  5  HRB400钢筋材料参数

    Table  5.   Material parameters of HRB400 rebar

    $ \rho/(\text{kg}\cdot\text{m}^{-3}) $ $ E/{\text{GPa}} $ $ \nu $ $ \sigma_{\mathrm{Y}}/\text{MPa} $ $ E\mathrm{_t}/\text{MPa} $ $ f\mathrm{_s} $
    7800 207 0.3 400 1100 0.092
    下载: 导出CSV

    表  6  试验与数值模拟结果对比

    Table  6.   Comparison of test and simulation results

    Case Maximum displacement Pit diameter
    Test/mm Simulation/mm Error/% Test/mm Simulation/mm Error/%
    J-1 138 134 3.6
    J-2 127 130 2.4
    J-3 44 42 4.5
    下载: 导出CSV

    表  7  等效质量系数、等效载荷系数及等效质量载荷系数

    Table  7.   Equivalent mass, load and mass loading factor

    Boundary conditions and load forms Responsive KM KL KLM
    Elasticity0.500.640.78
    Plasticity0.330.500.66
    Elasticity0.410.530.77
    Elastoplastic0.500.640.78
    Plasticity0.330.500.66
    下载: 导出CSV

    表  8  数值模拟结果

    Table  8.   Numerical simulation results

    Case Blast distance/m TNT mass/kg Scaled distance/(m·kg−1/3) Back polyurea thickness/mm Damage mode
    JF-1 1.0 10 0.4642 5
    JF-2 1.0 12 0.4368 5
    JF-3 1.0 14 0.4149 5
    JF-4 1.0 16 0.3969 5
    JF-5 1.0 18 0.3816 5
    JF-6 1.0 20 0.3684 5
    下载: 导出CSV

    表  9  工况设置及数值模拟结果

    Table  9.   Test conditions and simulation results

    Case Blast distance/m TNT mass/kg Rebar/pieces Back polyurea thickness/mm Damage mode
    1 1.0 14.0 6 5
    2 1.0 15.0 6 5
    3 1.0 15.5 10 5
    4 1.0 16.5 10 5
    5 1.0 18.0 10 5
    6 1.0 17.0 14 5
    7 1.0 18.0 14 5
    8 1.0 18.5 18 5
    9 1.0 19.0 18 5
    10 1.0 19.5 18 5
    11 1.0 20.0 22 5
    12 1.0 21.0 22 5
    下载: 导出CSV
  • [1] 李利莎, 杜建国, 张洪海, 等. 爆炸冲击震动对砖墙破坏作用的数值模拟 [J]. 爆炸与冲击, 2015, 35(4): 459–466. doi: 10.11883/1001-1455(2015)04-0459-08

    LI L S, DU J G, ZHANG H H, et al. Numerical simulation of damage of brick wall subjected to blast shock vibration [J]. Explosion and Shock Waves, 2015, 35(4): 459–466. doi: 10.11883/1001-1455(2015)04-0459-08
    [2] 曾繁, 肖桂仲, 冯晓伟, 等. 砌体结构长脉宽爆炸荷载损伤等级评估方法 [J]. 爆炸与冲击, 2021, 41(10): 127–137. doi: 10.11883/bzycj-2020-0399

    ZENG F, XIAO G Z, FENG X W, et al. A damage assessment method for masonry structures subjected to long duration blast loading [J]. Explosion and Shock Waves, 2021, 41(10): 127–137. doi: 10.11883/bzycj-2020-0399
    [3] WANG W, WEI G S, WANG X, et al. Structural damage assessment of RC slab strengthened with POZD coated steel plate under contact explosion [J]. Structures, 2023, 48: 31–39. doi: 10.1016/j.istruc.2022.12.090
    [4] WANG W, YANG G R, YANG J C, et al. Experimental and numerical research on reinforced concrete slabs strengthened with POZD coated corrugated steel under contact explosive load [J]. International Journal of Impact Engineering, 2022, 166: 104256. doi: 10.1016/j.ijimpeng.2022.104256
    [5] CHEN D, WU H, FANG Q, et al. A nonlinear visco-hyperelastic model for spray polyurea and applications [J]. International Journal of Impact Engineering, 2022, 167: 104265. doi: 10.1016/j.ijimpeng.2022.104265
    [6] CHEN D, WU H, WEI J S, et al. Nonlinear visco-hyperelastic tensile constitutive model of spray polyurea within wide strain-rate range [J]. International Journal of Impact Engineering, 2022, 163: 104184. doi: 10.1016/j.ijimpeng.2022.104184
    [7] WANG J G, REN H Q, WU X Y, et al. Blast response of polymer-retrofitted masonry unit walls [J]. Composites Part B: Engineering, 2017, 128: 174–181. doi: 10.1016/j.compositesb.2016.02.044
    [8] ZHU H J, WANG X, WANG Y T, et al. Damage behavior and assessment of polyurea sprayed reinforced clay brick masonry walls subjected to close-in blast loads [J]. International Journal of Impact Engineering, 2022, 167: 104283. doi: 10.1016/j.ijimpeng.2022.104283
    [9] ZHU H J, LUO X N, JI C, et al. Strengthening of clay brick masonry wall with spraying polyurea for repeated blast resistance [J]. Structures, 2023, 53: 1069–1091. doi: 10.1016/j.istruc.2023.05.004
    [10] ZHANG Y, HU J H, ZHAO W D, et al. Numerical simulation of the blast resistance of SPUA retrofitted CMU masonry walls [J]. Buildings, 2023, 13(2): 446. doi: 10.3390/buildings13020446
    [11] SANTOS A P, CHIQUITO M, CASTEDO R, et al. Experimental and numerical study of polyurea coating systems for blast mitigation of concrete masonry walls [J]. Engineering Structures, 2023, 284: 116006. doi: 10.1016/j.engstruct.2023.116006
    [12] CHEN D, WU H, FANG Q. Simplified micro-model for brick masonry walls under out-of-plane quasi-static and blast loadings [J]. International Journal of Impact Engineering, 2023, 174: 104529. doi: 10.1016/j.ijimpeng.2023.104529
    [13] Methodology manual for the single degree of freedom blast effects design spreadsheets [R]. PDC-TR 06-01, US Army Corps of Engineers, 2008.
    [14] Structures to resist the effects of accidental explosions [R]. UFC 3-340-02, Washington DC: US Department of Defence, 2008.
    [15] 许林峰, 陈力, 李展, 等. 聚脲加固砖填充墙抗爆性能的试验和分析方法研究 [J]. 爆炸与冲击, 2022, 42(7): 126–137. doi: 10.11883/bzycj-2021-0332

    XU L F, CHEN L, LI Z, et al. Experimental and analytical study on blast resistance performance of brick infill walls strengthened with polyuria [J]. Explosion and Shock Waves, 2022, 42(7): 126–137. doi: 10.11883/bzycj-2021-0332
    [16] YANG C Z, JIA X, HUANG Z X, et al. Damage of full-scale reinforced concrete beams under contact explosion [J]. International Journal of Impact Engineering, 2022, 163: 104180. doi: 10.1016/j.ijimpeng.2022.104180
    [17] RAMAN S, NGO T, LU J H, et al. Experimental investigation on the tensile behavior of polyurea at high strain rates [J]. Materials & Design, 2013, 50: 124–129.
    [18] 汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究[D]. 长沙: 国防科学技术大学, 2014.

    WANG W. Study on damage effects and assessments method of reinforced concrete structural members under blast loading [D]. Changsha: National University of Defense Technology, 2014.
    [19] 陈力, 方秦, 还毅, 等. 爆炸荷载作用下钢筋混凝土梁板结构的面力效应 [J]. 工程力学, 2010, 27(8): 156–163.

    CHEN L, FANG Q, HUAN Y, et al. Membrane action on reinforced concrete beam-slab structures subjected to blast loads [J]. Engineering Mechanics, 2010, 27(8): 156–163.
    [20] WU G, JI C, WANG X, et al. Blast response of clay brick masonry unit walls unreinforced and reinforced with polyurea elastomer [J]. Defence Technology, 2022, 18(4): 643–662. doi: 10.1016/j.dt.2021.03.004
  • 加载中
图(16) / 表(9)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  7
  • PDF下载量:  2
出版历程
  • 收稿日期:  2024-09-23
  • 修回日期:  2024-10-28
  • 刊出日期:  2025-03-05

目录

    /

    返回文章
    返回