水含量对多孔粒现场混装铵胺炸药性能的影响

李天浩 吴红波 汪泉 黄文尧 孙彦臣 牛草原 黄菓树 叶紫阳

李天浩, 吴红波, 汪泉, 黄文尧, 孙彦臣, 牛草原, 黄菓树, 叶紫阳. 水含量对多孔粒现场混装铵胺炸药性能的影响[J]. 高压物理学报, 2025, 39(3): 031302. doi: 10.11858/gywlxb.20240885
引用本文: 李天浩, 吴红波, 汪泉, 黄文尧, 孙彦臣, 牛草原, 黄菓树, 叶紫阳. 水含量对多孔粒现场混装铵胺炸药性能的影响[J]. 高压物理学报, 2025, 39(3): 031302. doi: 10.11858/gywlxb.20240885
LI Tianhao, WU Hongbo, WANG Quan, HUANG Wenyao, SUN Yanchen, NIU Caoyuan, HUANG Guoshu, YE Ziyang. Effect of Water Content on the Performance of Porous Granular Ammonium Nitrate On-Site Mixed Ammonium Amine Explosive[J]. Chinese Journal of High Pressure Physics, 2025, 39(3): 031302. doi: 10.11858/gywlxb.20240885
Citation: LI Tianhao, WU Hongbo, WANG Quan, HUANG Wenyao, SUN Yanchen, NIU Caoyuan, HUANG Guoshu, YE Ziyang. Effect of Water Content on the Performance of Porous Granular Ammonium Nitrate On-Site Mixed Ammonium Amine Explosive[J]. Chinese Journal of High Pressure Physics, 2025, 39(3): 031302. doi: 10.11858/gywlxb.20240885

水含量对多孔粒现场混装铵胺炸药性能的影响

doi: 10.11858/gywlxb.20240885
基金项目: 安徽高校自然科学研究重大项目(2024AH040070)
详细信息
    作者简介:

    李天浩(2000-),男,硕士研究生,主要从事工业炸药研究. E-mail:1099285250@qq.com

    通讯作者:

    吴红波(1975-),男,博士,教授,主要从事爆破器材与安全研究. E-mail:hbwu@aust.edu.cn

  • 中图分类号: O521.3; O383

Effect of Water Content on the Performance of Porous Granular Ammonium Nitrate On-Site Mixed Ammonium Amine Explosive

  • 摘要: 为研究水含量对多孔粒现场混装铵胺炸药性能的影响,通过控制水相中的水含量,制备5组不同水含量的现场混装铵胺炸药。使用扫描电镜观测多孔粒状硝酸铵的微观结构,用Brinkley-Wilson法计算了炸药的爆热和爆速。测试了不同水含量下多孔粒状硝酸铵的溶解度,以及铵胺炸药基质的黏度、炸药的浸水电导率和爆速。结果表明:当水的质量分数由9%增至17%时,铵胺炸药基质的混合均匀度增加,初始黏度由218539 mPa·s降至99443 mPa·s;不同水含量炸药浸水3 h后的电导率先由1.416 mS/cm降至1.234 mS/cm,后升至2.600 mS/cm;理论爆速由4943 m/s降至4716 m/s;实际爆速受到固体硝酸铵含量影响,先由3376 m/s增至3676 m/s,后下降至3631 m/s。实际生产中现场混装铵胺炸药中水的质量分数应控制在13%左右,此时炸药的抗水性最佳,实际爆速较高。

     

  • 图  现场混装铵胺炸药的制备工艺

    Figure  1.  Preparation technology of on-site mixed ammonium amine explosive

    图  爆速测试系统

    Figure  2.  Detonation velocity test system

    图  多孔粒状硝酸铵内部结构SEM图像

    Figure  3.  SEM image of the internal structure of porous granular ammonium nitrate

    图  不同质量分数水的混装铵胺炸药基质的俯视图

    Figure  4.  Top views of on-site mixed ammonium amine explosive with different water mass fraction

    图  静置48 h后铵胺炸药基质的外观形貌

    Figure  5.  Appearances of the matrices of ammonium amine explosive after 48 h

    图  铵胺炸药基质黏度与水质量分数的关系曲线

    Figure  6.  Relationship curves between the viscosity of ammonium amine explosive matrix and mass fraction of water

    图  铵胺炸药电导率随时间的变化曲线

    Figure  7.  Conductivity curves of ammonium amine explosive with time

    图  固体硝酸铵含量和铵胺炸药爆速与水质量分数的关系曲线

    Figure  8.  Relationship curves between solid ammonium nitrate content and detonation speed of ammonium amine explosive with mass fraction of water

    表  1  现场混装铵胺炸药的基础配方

    Table  1.   Base formula for field mixed ammonium explosive

    IngredientMass fraction/%
    pg-AN71.0
    SN2.5
    H2O11.0
    HMT6.5
    Acetic acid6.7
    Diesel oil1.0
    Sesbania gum0.9
    Foaming agent0.3
    Cross-linking agent0.1
    下载: 导出CSV

    表  2  不同水质量分数的铵胺炸药基质的黏度(部分)

    Table  2.   Viscosities of ammonium amine explosive matrix with different mass fractions of water (part)

    No.Mass fraction of water/%Viscosity/(mPa·s)
    12 s24 s36 s48 s40 s
    19218539213917208948201272208110
    211177683165572166761165073165222
    313145348140874140316142264138693
    415117442110735106030106877104661
    5179944394217928799200993606
    下载: 导出CSV

    表  3  现场混装铵胺炸药的理论爆轰参数

    Table  3.   Theoretical detonation parameters of on-site mixed ammonium amine explosive

    No. Mass fraction/% QV/
    (J·g–1)
    vD/
    (m·s–1)
    pg-AN SN H2O HMT Acetic
    acid
    Diesel
    oil
    Sesbania
    gum
    Foaming
    agent
    Cross-linking
    agent
    1 73.0 2.5 9.0 6.5 6.7 1.0 0.9 0.3 0.1 3430 5454
    2 71.0 2.5 11.0 6.5 6.7 1.0 0.9 0.3 0.1 3402 5403
    3 69.0 2.5 13.0 6.5 6.7 1.0 0.9 0.3 0.1 3351 5333
    4 67.0 2.5 15.0 6.5 6.7 1.0 0.9 0.3 0.1 3299 5234
    5 65.0 2.5 17.0 6.5 6.7 1.0 0.9 0.3 0.1 3247 5165
    下载: 导出CSV
  • [1] 汪旭光. 关于低碳经济与民爆行业发展的思考 [J]. 工程爆破, 2009, 15(3): 1–4, 13. doi: 10.3969/j.issn.1006-7051.2009.03.001

    WANG X G. Thinking on the development of low carbon economy and civil blasting industry [J]. Engineering Blasting, 2009, 15(3): 1–4, 13. doi: 10.3969/j.issn.1006-7051.2009.03.001
    [2] 牛斌, 李仕洪. 改进型多孔粒状铵油炸药生产工艺的设计 [J]. 工程爆破, 2022, 28(4): 96–101. doi: 10.19931/j.EB.20210295

    NIU B, LI S H. Design of production technology of improved prilled porous ANFO [J]. Engineering Blasting, 2022, 28(4): 96–101. doi: 10.19931/j.EB.20210295
    [3] 唐秋明, 张爱军, 任卫东, 等. 乳化炸药乳化的爆炸危险性研究 [J]. 爆破器材, 2018, 47(1): 1–9. doi: 10.3969/j.issn.1001-8352.2018.01.001

    TANG Q M, ZHANG A J, REN W D, et al. Study on explosion hazard of emulsification of emulsion explosive [J]. Explosive Materials, 2018, 47(1): 1–9. doi: 10.3969/j.issn.1001-8352.2018.01.001
    [4] 潮捷, 黄文尧, 吴红波, 等. 铝粉对化学敏化水胶炸药性能影响的实验研究 [J]. 工程爆破, 2021, 27(6): 110–115. doi: 10.19931/j.EB.20210059

    CHAO J, HUANG W Y, WU H B, et al. Study on the influence of aluminum powder on the performance of water gel explosives sensitized by chemical method [J]. Engineering Blasting, 2021, 27(6): 110–115. doi: 10.19931/j.EB.20210059
    [5] 杜善周, 叶涛, 黄涌波, 等. 用于铵油炸药的煤基纳米碳氢添加剂、其制备方法及应用: CN116375546A [P]. 2023-07-04.

    DU S Z, YE T, HUANG Y B, et al. Coal-based nano hydrocarbon additive for ammonium nitrate fuel oil explosive as well as preparation method and application of coal-based nano hydrocarbon additive: CN116375546A [P]. 2023-07-04.
    [6] HE Z W, LI Y Y, YU Y K, et al. Preparation and performance of ANPyO/emulsion explosive composite energetic system [J]. Propellants, Explosives, Pyrotechnics, 2022, 47(11): e202200121. doi: 10.1002/prep.202200121
    [7] ZHANG K M, ZHAO H R. Perspectives in the stability of emulsion explosive [J]. Advances in Colloid and Interface Science, 2022, 307: 102745. doi: 10.1016/j.cis.2022.102745
    [8] CHEN J P, MA H H, WANG Y X, et al. Effect of hydrogen-storage pressure on the detonation characteristics of emulsion explosives sensitized by glass microballoons [J]. Defence Technology, 2022, 18(5): 747–754. doi: 10.1016/j.dt.2021.03.021
    [9] SUN W B, GAO X F, WANG Y, et al. Thermal safety analysis of on-site emulsion explosives mixed with waste engine oil [J]. Energies, 2022, 15(3): 895. doi: 10.3390/en15030895
    [10] 庞伟, 刘娟. 准能集团煤基纳米碳氢硝铵炸药工业化应用取得重大突破 [N]. 中国能源报, 2024-01-08(13).
    [11] 何志伟, 朱文宇, 葛玉强, 等. 铝灰替代含铝乳化炸药中铝粉的可行性研究 [J]. 爆破器材, 2023, 52(2): 32–38. doi: 10.3969/j.issn.1001-8352.2023.02.006

    HE Z W, ZHU W Y, GE Y Q, et al. Feasibility study on substitution of aluminum powder in aluminized emulsion explosive with aluminum ash [J]. Explosive Materials, 2023, 52(2): 32–38. doi: 10.3969/j.issn.1001-8352.2023.02.006
    [12] 黄麟, 赵旭东, 席韬, 等. 现场混装乳化炸药中低温制备及性能表征 [J]. 工程爆破, 2023, 29(4): 143–148. doi: 10.19931/j.EB.20230020

    HUANG L, ZHAO X D, XI T, et al. Midow temperature preparation and properties characterization of on-site mixed emulsion explosive [J]. Engineering Blasting, 2023, 29(4): 143–148. doi: 10.19931/j.EB.20230020
    [13] 黄文尧, 牛草原, 孙宝亮, 等. 一种胶状铵胺炸药及其制备方法: CN115650809A [P]. 2023-01-31.

    HUANG W Y, NIU C Y, SUN B L, et al. Colloidal ammonium amine explosive and preparation method thereof: CN115650809A [P]. 2023-01-31.
    [14] 孙彦臣, 黄文尧, 梁昊, 等. 硝酸铵细度对铵胺炸药性能的影响 [J]. 火炸药学报, 2024, 47(4): 316–323. doi: 10.14077/j.issn.1007-7812.202308017

    SUN Y C, HUANG W Y, LIANG H, et al. Effect of fineness of ammonium nitrate on properties of ammonium amine explosive [J]. Chinese Journal of Explosives & Propellants, 2024, 47(4): 316–323. doi: 10.14077/j.issn.1007-7812.202308017
    [15] 胡洁, 黄文尧, 孙彦臣, 等. 六亚甲基四胺含量对铵胺炸药性能的影响 [J]. 高压物理学报, 2023, 37(5): 055201. doi: 10.11858/gywlxb.20230691

    HU J, HUANG W Y, SUN Y C, et al. Effect of hexamethylenetetramine content on the performance of ammonium-amine explosives [J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 055201. doi: 10.11858/gywlxb.20230691
    [16] SHI R, FANG G J, QIAO C X, et al. Investigation into the gel substrate fabrication of a novel ammonium amine explosive and its generic properties exploration [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 682: 132918. doi: 10.1016/j.colsurfa.2023.132918
    [17] 牛草原, 黄文尧, 刘小辉, 等. 多孔粒状硝酸铵含量对现场混装乳化炸药的性能影响 [J]. 火炸药学报, 2023, 46(11): 999–1006. doi: 10.14077/j.issn.1007-7812.202302017

    NIU C Y, HUANG W Y, LIU X H, et al. Influence of porous granular ammonium nitrate content on the performance of field mixed emulsion explosive [J]. Chinese Journal of Explosives & Propellants, 2023, 46(11): 999–1006. doi: 10.14077/j.issn.1007-7812.202302017
    [18] 王明烨, 韩志伟, 李席, 等. 铝粉粒径对温压炸药爆炸性能及热安定性的影响 [J]. 高压物理学报, 2018, 32(3): 035201. doi: 10.11858/gywlxb.20170627

    WANG M Y, HAN Z W, LI X, et al. Influence of aluminum particle size on explosion performance and thermal stability of thermobaric explosive [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035201. doi: 10.11858/gywlxb.20170627
    [19] 黄文尧, 颜事龙. 炸药化学与制造 [M]. 北京: 冶金工业出版社, 2009.

    HUANG W Y, YAN S L. Explosives chemistry and production [M]. Beijing: Metallurgical Industry Press, 2009.
    [20] 孙宝亮, 黄文尧, 汪泉, 等. 硅藻土为载体的低爆速乳化炸药制备与性能 [J]. 含能材料, 2023, 31(1): 26–34. doi: 10.11943/CJEM2022092

    SUN B L, HUANG W Y, WANG Q, et al. Preparation and performance of diatomite emulsion explosive with low detonation velocity [J]. Chinese Journal of Energetic Materials, 2023, 31(1): 26–34. doi: 10.11943/CJEM2022092
    [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 工业炸药爆速测定方法:GB/T 13228-2015 [S]. 北京: 中国标准出版社, 2016.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Test method of detonation velocity for industrial explosive: GB/T 13228-2015 [S]. Beijing: Standards Press of China, 2016.
    [22] 程扬帆, 马宏昊, 沈兆武. 氢化镁储氢型乳化炸药的爆炸特性研究 [J]. 高压物理学报, 2013, 27(1): 45–50. doi: 10.11858/gywlxb.2013.01.006

    CHENG Y F, MA H H, SHEN Z W. Detonation characteristics of emulsion explosives sensitized by MgH2 [J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 45–50. doi: 10.11858/gywlxb.2013.01.006
    [23] 黄寅生. 炸药理论 [M]. 北京: 北京理工大学出版社, 2016.

    HUANG Y S. Explosives theory [M]. Beijing: Beijing Institute of Technology Press, 2016.
    [24] 李鑫, 查正清. 远程配送乳胶基质专用运输车的研制 [J]. 工程爆破, 2014, 20(3): 40–42. doi: 10.3969/j.issn.1006-7051.2014.03.011

    LI X, ZHA Z Q. Development of special transport vehicle for long-distance distribution of emulsion matrix [J]. Engineering Blasting, 2014, 20(3): 40–42. doi: 10.3969/j.issn.1006-7051.2014.03.011
    [25] 吕春绪, 刘祖亮, 陆明, 等. 工业炸药理论 [M]. 北京: 兵器工业出版社, 2003.

    LU C X, LIU Z L, LU M, et al. Industrial explosive theory [M]. Beijing: Weapon Industry Press, 2003.
    [26] MAITI S, KHILLAR P S, MISHRA D, et al. Physical and self-crosslinking mechanism and characterization of chitosan-gelatin-oxidized guar gum hydrogel [J]. Polymer Testing, 2021, 97: 107155. doi: 10.1016/J.POLYMERTESTING.2021.107155
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  7
  • PDF下载量:  4
出版历程
  • 收稿日期:  2024-09-06
  • 修回日期:  2024-11-11
  • 刊出日期:  2025-03-05

目录

    /

    返回文章
    返回