Effect of Water Content on the Performance of Porous Granular Ammonium Nitrate On-Site Mixed Ammonium Amine Explosive
-
摘要: 为研究水含量对多孔粒现场混装铵胺炸药性能的影响,通过控制水相中的水含量,制备5组不同水含量的现场混装铵胺炸药。使用扫描电镜观测多孔粒状硝酸铵的微观结构,用Brinkley-Wilson法计算了炸药的爆热和爆速。测试了不同水含量下多孔粒状硝酸铵的溶解度,以及铵胺炸药基质的黏度、炸药的浸水电导率和爆速。结果表明:当水的质量分数由9%增至17%时,铵胺炸药基质的混合均匀度增加,初始黏度由
218539 mPa·s降至99443 mPa·s;不同水含量炸药浸水3 h后的电导率先由1.416 mS/cm降至1.234 mS/cm,后升至2.600 mS/cm;理论爆速由4943 m/s降至4716 m/s;实际爆速受到固体硝酸铵含量影响,先由3376 m/s增至3676 m/s,后下降至3631 m/s。实际生产中现场混装铵胺炸药中水的质量分数应控制在13%左右,此时炸药的抗水性最佳,实际爆速较高。Abstract: In order to study the effect of water content on the performance of porous granular ammonium nitrate on-site mixed ammonium amine explosives, five groups of on-site mixed ammonium amine explosives with different water contents were prepared by controlling the water content in the aqueous phase. We used scanning electron microscope to observe the internal microstructure of porous granular ammonium nitrate, and Brinkley-Wilson method to carry out theoretical calculations on the heat of detonation and detonation velocity of the explosives. The solubility of porous granular ammonium nitrate at different water contents was tested, and the viscosity of the ammonium amine explosive matrix, the immersion conductivity and the detonation velocity were tested. The results show that with the increase of water mass fraction from 9% to 17%, the mixing homogeneity of ammonium amine explosive matrix increased, the initial viscosity decreases from218539 mPa·s to99443 mPa·s; the conductivity of the explosive immersed in water with different water content for 3 h first decreased from 1.416 mS/cm to 1.234 mS/cm, and then increases to 2.600 mS/cm; the theoretical detonation velocity decreases from4943 m/s to4716 m/s; the actual detonation velocity is affected by the content of solid ammonium nitrate, first increasing from3376 m/s to3676 m/s, and then decreasing to3631 m/s. In actual production, the mass fraction of water in on-site mixed ammonium amine explosives should be controlled at approximately 13%. At this water content, the explosives exhibit optimal water resistance, and achieve a relatively high actual detonation velocity.-
Key words:
- water content /
- ammonium amine explosive /
- viscosity /
- water-resistance /
- detonation velocity
-
表 1 现场混装铵胺炸药的基础配方
Table 1. Base formula for field mixed ammonium explosive
Ingredient Mass fraction/% pg-AN 71.0 SN 2.5 H2O 11.0 HMT 6.5 Acetic acid 6.7 Diesel oil 1.0 Sesbania gum 0.9 Foaming agent 0.3 Cross-linking agent 0.1 表 2 不同水质量分数的铵胺炸药基质的黏度(部分)
Table 2. Viscosities of ammonium amine explosive matrix with different mass fractions of water (part)
No. Mass fraction of water/% Viscosity/(mPa·s) 12 s 24 s 36 s 48 s 40 s 1 9 218539 213917 208948 201272 208110 2 11 177683 165572 166761 165073 165222 3 13 145348 140874 140316 142264 138693 4 15 117442 110735 106030 106877 104661 5 17 99443 94217 92879 92009 93606 表 3 现场混装铵胺炸药的理论爆轰参数
Table 3. Theoretical detonation parameters of on-site mixed ammonium amine explosive
No. Mass fraction/% QV/
(J·g–1)vD/
(m·s–1)pg-AN SN H2O HMT Acetic
acidDiesel
oilSesbania
gumFoaming
agentCross-linking
agent1 73.0 2.5 9.0 6.5 6.7 1.0 0.9 0.3 0.1 3430 5454 2 71.0 2.5 11.0 6.5 6.7 1.0 0.9 0.3 0.1 3402 5403 3 69.0 2.5 13.0 6.5 6.7 1.0 0.9 0.3 0.1 3351 5333 4 67.0 2.5 15.0 6.5 6.7 1.0 0.9 0.3 0.1 3299 5234 5 65.0 2.5 17.0 6.5 6.7 1.0 0.9 0.3 0.1 3247 5165 -
[1] 汪旭光. 关于低碳经济与民爆行业发展的思考 [J]. 工程爆破, 2009, 15(3): 1–4, 13. doi: 10.3969/j.issn.1006-7051.2009.03.001WANG X G. Thinking on the development of low carbon economy and civil blasting industry [J]. Engineering Blasting, 2009, 15(3): 1–4, 13. doi: 10.3969/j.issn.1006-7051.2009.03.001 [2] 牛斌, 李仕洪. 改进型多孔粒状铵油炸药生产工艺的设计 [J]. 工程爆破, 2022, 28(4): 96–101. doi: 10.19931/j.EB.20210295NIU B, LI S H. Design of production technology of improved prilled porous ANFO [J]. Engineering Blasting, 2022, 28(4): 96–101. doi: 10.19931/j.EB.20210295 [3] 唐秋明, 张爱军, 任卫东, 等. 乳化炸药乳化的爆炸危险性研究 [J]. 爆破器材, 2018, 47(1): 1–9. doi: 10.3969/j.issn.1001-8352.2018.01.001TANG Q M, ZHANG A J, REN W D, et al. Study on explosion hazard of emulsification of emulsion explosive [J]. Explosive Materials, 2018, 47(1): 1–9. doi: 10.3969/j.issn.1001-8352.2018.01.001 [4] 潮捷, 黄文尧, 吴红波, 等. 铝粉对化学敏化水胶炸药性能影响的实验研究 [J]. 工程爆破, 2021, 27(6): 110–115. doi: 10.19931/j.EB.20210059CHAO J, HUANG W Y, WU H B, et al. Study on the influence of aluminum powder on the performance of water gel explosives sensitized by chemical method [J]. Engineering Blasting, 2021, 27(6): 110–115. doi: 10.19931/j.EB.20210059 [5] 杜善周, 叶涛, 黄涌波, 等. 用于铵油炸药的煤基纳米碳氢添加剂、其制备方法及应用: CN116375546A [P]. 2023-07-04.DU S Z, YE T, HUANG Y B, et al. Coal-based nano hydrocarbon additive for ammonium nitrate fuel oil explosive as well as preparation method and application of coal-based nano hydrocarbon additive: CN116375546A [P]. 2023-07-04. [6] HE Z W, LI Y Y, YU Y K, et al. Preparation and performance of ANPyO/emulsion explosive composite energetic system [J]. Propellants, Explosives, Pyrotechnics, 2022, 47(11): e202200121. doi: 10.1002/prep.202200121 [7] ZHANG K M, ZHAO H R. Perspectives in the stability of emulsion explosive [J]. Advances in Colloid and Interface Science, 2022, 307: 102745. doi: 10.1016/j.cis.2022.102745 [8] CHEN J P, MA H H, WANG Y X, et al. Effect of hydrogen-storage pressure on the detonation characteristics of emulsion explosives sensitized by glass microballoons [J]. Defence Technology, 2022, 18(5): 747–754. doi: 10.1016/j.dt.2021.03.021 [9] SUN W B, GAO X F, WANG Y, et al. Thermal safety analysis of on-site emulsion explosives mixed with waste engine oil [J]. Energies, 2022, 15(3): 895. doi: 10.3390/en15030895 [10] 庞伟, 刘娟. 准能集团煤基纳米碳氢硝铵炸药工业化应用取得重大突破 [N]. 中国能源报, 2024-01-08(13). [11] 何志伟, 朱文宇, 葛玉强, 等. 铝灰替代含铝乳化炸药中铝粉的可行性研究 [J]. 爆破器材, 2023, 52(2): 32–38. doi: 10.3969/j.issn.1001-8352.2023.02.006HE Z W, ZHU W Y, GE Y Q, et al. Feasibility study on substitution of aluminum powder in aluminized emulsion explosive with aluminum ash [J]. Explosive Materials, 2023, 52(2): 32–38. doi: 10.3969/j.issn.1001-8352.2023.02.006 [12] 黄麟, 赵旭东, 席韬, 等. 现场混装乳化炸药中低温制备及性能表征 [J]. 工程爆破, 2023, 29(4): 143–148. doi: 10.19931/j.EB.20230020HUANG L, ZHAO X D, XI T, et al. Midow temperature preparation and properties characterization of on-site mixed emulsion explosive [J]. Engineering Blasting, 2023, 29(4): 143–148. doi: 10.19931/j.EB.20230020 [13] 黄文尧, 牛草原, 孙宝亮, 等. 一种胶状铵胺炸药及其制备方法: CN115650809A [P]. 2023-01-31.HUANG W Y, NIU C Y, SUN B L, et al. Colloidal ammonium amine explosive and preparation method thereof: CN115650809A [P]. 2023-01-31. [14] 孙彦臣, 黄文尧, 梁昊, 等. 硝酸铵细度对铵胺炸药性能的影响 [J]. 火炸药学报, 2024, 47(4): 316–323. doi: 10.14077/j.issn.1007-7812.202308017SUN Y C, HUANG W Y, LIANG H, et al. Effect of fineness of ammonium nitrate on properties of ammonium amine explosive [J]. Chinese Journal of Explosives & Propellants, 2024, 47(4): 316–323. doi: 10.14077/j.issn.1007-7812.202308017 [15] 胡洁, 黄文尧, 孙彦臣, 等. 六亚甲基四胺含量对铵胺炸药性能的影响 [J]. 高压物理学报, 2023, 37(5): 055201. doi: 10.11858/gywlxb.20230691HU J, HUANG W Y, SUN Y C, et al. Effect of hexamethylenetetramine content on the performance of ammonium-amine explosives [J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 055201. doi: 10.11858/gywlxb.20230691 [16] SHI R, FANG G J, QIAO C X, et al. Investigation into the gel substrate fabrication of a novel ammonium amine explosive and its generic properties exploration [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 682: 132918. doi: 10.1016/j.colsurfa.2023.132918 [17] 牛草原, 黄文尧, 刘小辉, 等. 多孔粒状硝酸铵含量对现场混装乳化炸药的性能影响 [J]. 火炸药学报, 2023, 46(11): 999–1006. doi: 10.14077/j.issn.1007-7812.202302017NIU C Y, HUANG W Y, LIU X H, et al. Influence of porous granular ammonium nitrate content on the performance of field mixed emulsion explosive [J]. Chinese Journal of Explosives & Propellants, 2023, 46(11): 999–1006. doi: 10.14077/j.issn.1007-7812.202302017 [18] 王明烨, 韩志伟, 李席, 等. 铝粉粒径对温压炸药爆炸性能及热安定性的影响 [J]. 高压物理学报, 2018, 32(3): 035201. doi: 10.11858/gywlxb.20170627WANG M Y, HAN Z W, LI X, et al. Influence of aluminum particle size on explosion performance and thermal stability of thermobaric explosive [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035201. doi: 10.11858/gywlxb.20170627 [19] 黄文尧, 颜事龙. 炸药化学与制造 [M]. 北京: 冶金工业出版社, 2009.HUANG W Y, YAN S L. Explosives chemistry and production [M]. Beijing: Metallurgical Industry Press, 2009. [20] 孙宝亮, 黄文尧, 汪泉, 等. 硅藻土为载体的低爆速乳化炸药制备与性能 [J]. 含能材料, 2023, 31(1): 26–34. doi: 10.11943/CJEM2022092SUN B L, HUANG W Y, WANG Q, et al. Preparation and performance of diatomite emulsion explosive with low detonation velocity [J]. Chinese Journal of Energetic Materials, 2023, 31(1): 26–34. doi: 10.11943/CJEM2022092 [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 工业炸药爆速测定方法:GB/T 13228-2015 [S]. 北京: 中国标准出版社, 2016.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Test method of detonation velocity for industrial explosive: GB/T 13228-2015 [S]. Beijing: Standards Press of China, 2016. [22] 程扬帆, 马宏昊, 沈兆武. 氢化镁储氢型乳化炸药的爆炸特性研究 [J]. 高压物理学报, 2013, 27(1): 45–50. doi: 10.11858/gywlxb.2013.01.006CHENG Y F, MA H H, SHEN Z W. Detonation characteristics of emulsion explosives sensitized by MgH2 [J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 45–50. doi: 10.11858/gywlxb.2013.01.006 [23] 黄寅生. 炸药理论 [M]. 北京: 北京理工大学出版社, 2016.HUANG Y S. Explosives theory [M]. Beijing: Beijing Institute of Technology Press, 2016. [24] 李鑫, 查正清. 远程配送乳胶基质专用运输车的研制 [J]. 工程爆破, 2014, 20(3): 40–42. doi: 10.3969/j.issn.1006-7051.2014.03.011LI X, ZHA Z Q. Development of special transport vehicle for long-distance distribution of emulsion matrix [J]. Engineering Blasting, 2014, 20(3): 40–42. doi: 10.3969/j.issn.1006-7051.2014.03.011 [25] 吕春绪, 刘祖亮, 陆明, 等. 工业炸药理论 [M]. 北京: 兵器工业出版社, 2003.LU C X, LIU Z L, LU M, et al. Industrial explosive theory [M]. Beijing: Weapon Industry Press, 2003. [26] MAITI S, KHILLAR P S, MISHRA D, et al. Physical and self-crosslinking mechanism and characterization of chitosan-gelatin-oxidized guar gum hydrogel [J]. Polymer Testing, 2021, 97: 107155. doi: 10.1016/J.POLYMERTESTING.2021.107155 -