Numerical Simulation on Damage and Failure of Metro Structure under Penetration and Explosion Effects
-
摘要: 以济南轨道交通7号线“水屯北路站”为例,基于LS-DYNA软件中的流-固耦合和完全重启动算法,开展了地铁结构由外及内的钻地弹先侵彻后爆炸以及由内及外的大当量TNT装药内部爆炸作用下结构毁伤破坏效应的数值模拟。首先,对已有弹体先侵彻后爆炸一次打击试验进行了数值模拟,验证了数值建模方法和材料模型参数选取的准确性。在此基础上,建立了3种由外及内的先侵彻后爆炸和3种由内及外的内爆炸三维数值模型,分析了地铁结构损伤破坏模式和对人员及附属构件的毁伤情况。数值模拟结果表明:钻地弹在地铁站上方先侵彻后爆炸作用时,地铁结构的损伤破坏模式为局部损伤;地铁结构内部爆炸时,超压峰值在爆炸近区衰减较快,在爆炸中远区衰减较慢。研究结果可为进一步探究内爆炸作用下地铁结构径向和法向冲击波传播衰减规律提供参考。Abstract: Taking Shuitun North Road Station of Jinan Rail Transit Line 7 as an example, a numerical simulation study was conducted to investigate the structural damage and failure effects of the metro structure based on the fluid-structure couple and full restart algorithm in LS-DYNA software. This study focused on two scenaries: projectile penetration followed by an explosion from outside to inside, and the inner explosion of a large equivalent TNT charge. Firstly, the accuracy of the numerical simulation and the selection of material model parameters were validated through the penetration followed by explosion test. Then, three cases of two-dimensional numerical model for penetration followed by explosion from outside to inside and three cases of three-dimensional numerical models for internal explosion were established. The damage mode of the metro structure and the damage condition for personnel and auxiliary components were analyzed. The simulation results demonstrate that the failure mode of the metro structure subjected to projectile penetration followed by explosion was localized damage. When the explosion occurs inside the metro structure, the peak of overpressure decays faster in the area close to explosion and slower in the middle and far area of the explosion. The present research results can provide a reference for further studies on the radial and normal shock wave propagation attenuation laws of the metro structure subjected to internal explosion.
-
Key words:
- penetration /
- explosion /
- metro structure /
- damage and failure
-
表 1 爆炸作用下地铁结构内部压力传播过程
Table 1. Pressure propagation process in metro structure under explosion
Time/ms Case A Case B Case C 0.17 0.64 1.22 1.90 2.67 -
[1] 高金金, 郭盼盼, 马晶晶, 等. 恐怖袭击下地铁隧道结构爆炸响应与防护对策 [J]. 北京理工大学学报, 2023, 43(6): 549–564.GAO J J, GUO P P, MA J J, et al. Response of metro tunnel to terrorist attack blast and countermeasures [J]. Transactions of Beijing Institute of Technology, 2023, 43(6): 549–564. [2] 孔德森, 孟庆辉, 史明臣, 等. 爆炸冲击波在地铁隧道内的传播规律研究 [J]. 地下空间与工程学报, 2012, 8(1): 48–55, 64. doi: 10.3969/j.issn.1673-0836.2012.01.009KONG D S, MENG Q H, SHI M C, et al. The dissemination rule of blasting shock-wave in subway tunnel [J]. Chinese Journal of Underground Space and Engineering, 2012, 8(1): 48–55, 64. doi: 10.3969/j.issn.1673-0836.2012.01.009 [3] 孔德森, 孟庆辉, 张伟伟, 等. 爆炸荷载作用下地铁隧道的冲击反应研究 [J]. 振动与冲击, 2012, 31(12): 68–72. doi: 10.3969/j.issn.1000-3835.2012.12.016KONG D S, MENG Q H, ZHANG W W, et al. Shock responses of a metro tunnel subjected to explosive loads [J]. Journal of Vibration and Shock, 2012, 31(12): 68–72. doi: 10.3969/j.issn.1000-3835.2012.12.016 [4] 李忠献, 刘杨, 田力. 单侧隧道内爆炸荷载作用下双线地铁隧道的动力响应与抗爆分析 [J]. 北京工业大学学报, 2006, 32(2): 173–181. doi: 10.3969/j.issn.0254-0037.2006.02.014LI Z X, LIU Y, TIAN L. Dynamic response and blast-resistance analysis of double track subway tunnel subjected to blast loading within one side of tunnel [J]. Journal of Beijing University of Technology, 2006, 32(2): 173–181. doi: 10.3969/j.issn.0254-0037.2006.02.014 [5] 王德荣, 冯淑芳, 李杰, 等. 地下隧道在内爆炸荷载作用下的动力响应分析 [J]. 解放军理工大学学报(自然科学版), 2013, 14(5): 511–516.WANG D R, FENG S F, LI J, et al. Dynamic response of underground tunnel to internal explosion loading [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2013, 14(5): 511–516. [6] ZHAO D B, HUANG Y T, CHEN X S, et al. Numerical investigations on dynamic responses of subway segmental tunnel lining structures under internal blasts [J]. Tunnelling and Underground Space Technology, 2023, 135: 105058. doi: 10.1016/j.tust.2023.105058 [7] 赵敏, 周子豪. 爆炸荷载下地铁盾构隧道动力响应研究 [J]. 科学技术与工程, 2019, 19(34): 302–307. doi: 10.3969/j.issn.1671-1815.2019.34.044ZHAO M, ZHOU Z H. Study on dynamic response of shield tunnel under explosion load [J]. Science Technology and Engineering, 2019, 19(34): 302–307. doi: 10.3969/j.issn.1671-1815.2019.34.044 [8] 赵敏, 周子豪. 爆炸荷载下地铁隧道损伤规律研究 [J]. 中国安全生产科学技术, 2019, 15(8): 118–123. doi: 10.11731/j.issn.1673-193x.2019.08.019ZHAO M, ZHOU Z H. Study on damage laws of subway tunnel under explosive load [J]. Journal of Safety Science and Technology, 2019, 15(8): 118–123. doi: 10.11731/j.issn.1673-193x.2019.08.019 [9] 章毅, 周布奎, 于潇, 等. 地面炸药库爆炸对地铁隧道的影响 [J]. 防护工程, 2019, 41(3): 33–37.ZHANG Y, ZHOU B K, YU X, et al. Effect of accidental explosion of ground explosive depot on metro tunnel [J]. Protective Engineering, 2019, 41(3): 33–37. [10] 马建军, 李诚豪, 关俊威, 等. 地铁隧道上方近距离爆炸动力响应研究 [J]. 铁道科学与工程学报, 2023, 20(6): 2246–2255.MA J J, LI C H, GUAN J W, et al. Research on the dynamic response of close-range explosion above a subway tunnel [J]. Journal of Railway Science and Engineering, 2023, 20(6): 2246–2255. [11] ZHOU Q, HE H G, LIU S F, et al. Blast resistance evaluation of urban utility tunnel reinforced with BFRP bars [J]. Defence Technology, 2021, 17(2): 512–530. doi: 10.1016/j.dt.2020.03.015 [12] ZHANG Z, ZHOU C B, REMENNIKOV A, et al. Dynamic response and safety control of civil air defense tunnel under excavation blasting of subway tunnel [J]. Tunnelling and Underground Space Technology, 2021, 112: 103879. doi: 10.1016/j.tust.2021.103879 [13] JIANG N, ZHU B, ZHOU C B, et al. Safety criterion of gas pipeline buried in corrosive saturated soft soil subjected to blasting vibration in a coastal metro line [J]. Thin-Walled Structures, 2022, 180: 109860. doi: 10.1016/j.tws.2022.109860 [14] ZHANG Y Q, JIANG N, ZHOU C B, et al. Mechanical behaviors and failure mechanism of HDPE corrugated pipeline subjected to blasting seismic wave [J]. Alexandria Engineering Journal, 2023, 67: 597–607. doi: 10.1016/j.aej.2022.12.052 [15] 王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. doi: 10.11883/bzycj-2021-0132WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. doi: 10.11883/bzycj-2021-0132 [16] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册 [M]. 北京: 机械工业出版社, 2020.XIN C L, XUE Z Q, TU J, et al. Handbook of common material parameters for finite element analysis [M]. Beijing: China Machine Press, 2020. [17] 何兆益, 汪凡, 朱磊, 等. 基于Johnson-Cook黏塑性模型的沥青路面车辙计算 [J]. 重庆交通大学学报(自然科学版), 2010, 29(1): 49–53.HE Z Y, WANG F, ZHU L, et al. Rutting calculation of asphalt pavement based on the Johnson-Cook viscoplastic model [J]. Journal of Chongqing Jiaotong University (Natural Science), 2010, 29(1): 49–53. [18] 宗香华, 王银, 孔祥振, 等. 错位多次打击下UHPC靶体损伤破坏效应的数值模拟研究 [J]. 高压物理学报, 2024, 38(3): 034201. doi: 10.11858/gywlxb.20230834ZONG X H, WANG Y, KONG X Z, et al. Numerical investigation on damage and failure of UHPC targets subjected to dislocation multi-attacks [J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 034201. doi: 10.11858/gywlxb.20230834 [19] KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. doi: 10.1016/j.ijimpeng.2018.05.006 [20] 赵凯. 分层防护层对爆炸波的衰减和弥散作用研究 [D]. 合肥: 中国科学技术大学, 2007.ZHAO K. The attenuation and dispersion effects on explosive wave of layered protective engineering [D]. Hefei: University of Science and Technology of China, 2007. [21] YANG Y Z, FANG Q, KONG X Z. Failure mode and stress wave propagation in concrete target subjected to a projectile penetration followed by charge explosion: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2023, 177: 104595. doi: 10.1016/j.ijimpeng.2023.104595 [22] 总参谋部工程兵国防工程设计研究所. 防护工程防常规武器结构设计规范: GJB 7404–2023 [S]. 北京: 中国人民解放军总参谋部, 2013.The National Defense Engineering Design Institute of the Headquarters of the General Staff. Design specification for protective engineering anti-conventional weapon structure: GJB 7404–2023 [S]. Beijing: The General Staff Headquarters of the PLA, 2013. -