侵彻和爆炸作用下地铁结构毁伤破坏效应的数值模拟

王银 孙杰 翟永超 孙留洋 姜雅婷 宗香华 杨涛春 谢群

王银, 孙杰, 翟永超, 孙留洋, 姜雅婷, 宗香华, 杨涛春, 谢群. 侵彻和爆炸作用下地铁结构毁伤破坏效应的数值模拟[J]. 高压物理学报, 2025, 39(3): 035101. doi: 10.11858/gywlxb.20240877
引用本文: 王银, 孙杰, 翟永超, 孙留洋, 姜雅婷, 宗香华, 杨涛春, 谢群. 侵彻和爆炸作用下地铁结构毁伤破坏效应的数值模拟[J]. 高压物理学报, 2025, 39(3): 035101. doi: 10.11858/gywlxb.20240877
WANG Yin, SUN Jie, ZHAI Yongchao, SUN Liuyang, JIANG Yating, ZONG Xianghua, YANG Taochun, XIE Qun. Numerical Simulation on Damage and Failure of Metro Structure under Penetration and Explosion Effects[J]. Chinese Journal of High Pressure Physics, 2025, 39(3): 035101. doi: 10.11858/gywlxb.20240877
Citation: WANG Yin, SUN Jie, ZHAI Yongchao, SUN Liuyang, JIANG Yating, ZONG Xianghua, YANG Taochun, XIE Qun. Numerical Simulation on Damage and Failure of Metro Structure under Penetration and Explosion Effects[J]. Chinese Journal of High Pressure Physics, 2025, 39(3): 035101. doi: 10.11858/gywlxb.20240877

侵彻和爆炸作用下地铁结构毁伤破坏效应的数值模拟

doi: 10.11858/gywlxb.20240877
基金项目: 国家自然科学基金(52408534);山东省高等学校青创科技支持计划(TJY2303);济南大学博士基金(XBS2470);济南城建集团有限公司资助项目(W2023161)
详细信息
    作者简介:

    王 银(1991-),男,博士,讲师,主要从事固体材料冲击爆炸毁伤机理研究. E-mail:wangyin1107@163.com

    通讯作者:

    孙 杰(1966-),男,硕士,工程技术应用研究员,主要从事地下工程施工技术研究. E-mail:sunjiecjsgs@vip.sina.com

  • 中图分类号: O385; O521.9

Numerical Simulation on Damage and Failure of Metro Structure under Penetration and Explosion Effects

  • 摘要: 以济南轨道交通7号线“水屯北路站”为例,基于LS-DYNA软件中的流-固耦合和完全重启动算法,开展了地铁结构由外及内的钻地弹先侵彻后爆炸以及由内及外的大当量TNT装药内部爆炸作用下结构毁伤破坏效应的数值模拟。首先,对已有弹体先侵彻后爆炸一次打击试验进行了数值模拟,验证了数值建模方法和材料模型参数选取的准确性。在此基础上,建立了3种由外及内的先侵彻后爆炸和3种由内及外的内爆炸三维数值模型,分析了地铁结构损伤破坏模式和对人员及附属构件的毁伤情况。数值模拟结果表明:钻地弹在地铁站上方先侵彻后爆炸作用时,地铁结构的损伤破坏模式为局部损伤;地铁结构内部爆炸时,超压峰值在爆炸近区衰减较快,在爆炸中远区衰减较慢。研究结果可为进一步探究内爆炸作用下地铁结构径向和法向冲击波传播衰减规律提供参考。

     

  • 图  济南水屯北路站示意图 (单位:mm)

    Figure  1.  Schematic diagram of Jinan Shuitun North Road Station (Unit: mm)

    图  侵彻有限元模型

    Figure  2.  Finite element model for penetration

    图  爆炸有限元模型

    Figure  3.  Finite element model for explosion

    图  靶体内部测点布置示意图

    Figure  4.  Schematic diagram of measuring points inside the target

    图  混凝土靶体侵彻和爆炸损伤破坏[21]

    Figure  5.  Penetration and explosion damage of the concrete target[21]

    图  侵彻过程的有限元模型

    Figure  6.  Finite element model of the penetration process

    图  爆炸过程的有限元模型

    Figure  7.  Finite element model of the explosion process

    图  数值模拟预测的侵彻后靶体的损伤破坏

    Figure  8.  Numerical prediction for damage of the target after penetration

    图  数值模拟预测的爆炸后靶体的损伤破坏

    Figure  9.  Numerical prediction for damage of the target after explosion

    图  10  数值预测的爆炸后的压力时程曲线

    Figure  10.  Pressure-time history curves after explosion by numerical prediction

    图  11  数值预测3种工况侵彻后的损伤云图

    Figure  11.  Damage nephograms after penetration by numerical prediction of three cases

    图  12  工况1的侵彻深度、侵彻速度及弹体加速度时程曲线

    Figure  12.  Time-dependent curves of penetration depth, penetration velocity, and projectile acceleration in Case 1

    图  13  工况2的侵彻深度、侵彻速度及弹体加速度时程曲线

    Figure  13.  Time-dependent curves of penetration depth, penetration velocity, and projectile acceleration in Case 2

    图  14  工况3的侵彻深度、侵彻速度及弹体加速度时程曲线

    Figure  14.  Time-dependent curves of penetration depth, penetration velocity, and projectile acceleration in Case 3

    图  15  数值预测的工况1爆炸后地铁结构损伤

    Figure  15.  Damage of metro structure after explosion by numerical prediction in Case 1

    图  16  数值预测的工况1爆炸后地铁结构上压力分布

    Figure  16.  Pressure distribution on the metro structure subjected to the explosion by numerical prediction in Case 1

    图  17  济南水屯北路站三维示意图

    Figure  17.  Three-dimensional diagram of Jinan Shuitun North Road Station

    图  18  爆炸作用下地铁结构的有限元模型

    Figure  18.  Finite element model of metro structure subjected to blast

    图  19  数值预测的爆炸作用下地铁结构的损伤分布

    Figure  19.  Damage distribution of metro structure under explosion by numerical prediction

    图  20  数值预测的爆炸作用下地铁结构的压力分布

    Figure  20.  Pressure distribution of metro structure under explosion by numerical prediction

    图  21  爆炸作用下地铁结构内部测点位置与压力峰值

    Figure  21.  Measuring points and peak pressure inside the metro structure subjected to blast

    表  1  爆炸作用下地铁结构内部压力传播过程

    Table  1.   Pressure propagation process in metro structure under explosion

    Time/ms Case A Case B Case C
    0.17
    0.64
    1.22
    1.90
    2.67
    下载: 导出CSV
  • [1] 高金金, 郭盼盼, 马晶晶, 等. 恐怖袭击下地铁隧道结构爆炸响应与防护对策 [J]. 北京理工大学学报, 2023, 43(6): 549–564.

    GAO J J, GUO P P, MA J J, et al. Response of metro tunnel to terrorist attack blast and countermeasures [J]. Transactions of Beijing Institute of Technology, 2023, 43(6): 549–564.
    [2] 孔德森, 孟庆辉, 史明臣, 等. 爆炸冲击波在地铁隧道内的传播规律研究 [J]. 地下空间与工程学报, 2012, 8(1): 48–55, 64. doi: 10.3969/j.issn.1673-0836.2012.01.009

    KONG D S, MENG Q H, SHI M C, et al. The dissemination rule of blasting shock-wave in subway tunnel [J]. Chinese Journal of Underground Space and Engineering, 2012, 8(1): 48–55, 64. doi: 10.3969/j.issn.1673-0836.2012.01.009
    [3] 孔德森, 孟庆辉, 张伟伟, 等. 爆炸荷载作用下地铁隧道的冲击反应研究 [J]. 振动与冲击, 2012, 31(12): 68–72. doi: 10.3969/j.issn.1000-3835.2012.12.016

    KONG D S, MENG Q H, ZHANG W W, et al. Shock responses of a metro tunnel subjected to explosive loads [J]. Journal of Vibration and Shock, 2012, 31(12): 68–72. doi: 10.3969/j.issn.1000-3835.2012.12.016
    [4] 李忠献, 刘杨, 田力. 单侧隧道内爆炸荷载作用下双线地铁隧道的动力响应与抗爆分析 [J]. 北京工业大学学报, 2006, 32(2): 173–181. doi: 10.3969/j.issn.0254-0037.2006.02.014

    LI Z X, LIU Y, TIAN L. Dynamic response and blast-resistance analysis of double track subway tunnel subjected to blast loading within one side of tunnel [J]. Journal of Beijing University of Technology, 2006, 32(2): 173–181. doi: 10.3969/j.issn.0254-0037.2006.02.014
    [5] 王德荣, 冯淑芳, 李杰, 等. 地下隧道在内爆炸荷载作用下的动力响应分析 [J]. 解放军理工大学学报(自然科学版), 2013, 14(5): 511–516.

    WANG D R, FENG S F, LI J, et al. Dynamic response of underground tunnel to internal explosion loading [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2013, 14(5): 511–516.
    [6] ZHAO D B, HUANG Y T, CHEN X S, et al. Numerical investigations on dynamic responses of subway segmental tunnel lining structures under internal blasts [J]. Tunnelling and Underground Space Technology, 2023, 135: 105058. doi: 10.1016/j.tust.2023.105058
    [7] 赵敏, 周子豪. 爆炸荷载下地铁盾构隧道动力响应研究 [J]. 科学技术与工程, 2019, 19(34): 302–307. doi: 10.3969/j.issn.1671-1815.2019.34.044

    ZHAO M, ZHOU Z H. Study on dynamic response of shield tunnel under explosion load [J]. Science Technology and Engineering, 2019, 19(34): 302–307. doi: 10.3969/j.issn.1671-1815.2019.34.044
    [8] 赵敏, 周子豪. 爆炸荷载下地铁隧道损伤规律研究 [J]. 中国安全生产科学技术, 2019, 15(8): 118–123. doi: 10.11731/j.issn.1673-193x.2019.08.019

    ZHAO M, ZHOU Z H. Study on damage laws of subway tunnel under explosive load [J]. Journal of Safety Science and Technology, 2019, 15(8): 118–123. doi: 10.11731/j.issn.1673-193x.2019.08.019
    [9] 章毅, 周布奎, 于潇, 等. 地面炸药库爆炸对地铁隧道的影响 [J]. 防护工程, 2019, 41(3): 33–37.

    ZHANG Y, ZHOU B K, YU X, et al. Effect of accidental explosion of ground explosive depot on metro tunnel [J]. Protective Engineering, 2019, 41(3): 33–37.
    [10] 马建军, 李诚豪, 关俊威, 等. 地铁隧道上方近距离爆炸动力响应研究 [J]. 铁道科学与工程学报, 2023, 20(6): 2246–2255.

    MA J J, LI C H, GUAN J W, et al. Research on the dynamic response of close-range explosion above a subway tunnel [J]. Journal of Railway Science and Engineering, 2023, 20(6): 2246–2255.
    [11] ZHOU Q, HE H G, LIU S F, et al. Blast resistance evaluation of urban utility tunnel reinforced with BFRP bars [J]. Defence Technology, 2021, 17(2): 512–530. doi: 10.1016/j.dt.2020.03.015
    [12] ZHANG Z, ZHOU C B, REMENNIKOV A, et al. Dynamic response and safety control of civil air defense tunnel under excavation blasting of subway tunnel [J]. Tunnelling and Underground Space Technology, 2021, 112: 103879. doi: 10.1016/j.tust.2021.103879
    [13] JIANG N, ZHU B, ZHOU C B, et al. Safety criterion of gas pipeline buried in corrosive saturated soft soil subjected to blasting vibration in a coastal metro line [J]. Thin-Walled Structures, 2022, 180: 109860. doi: 10.1016/j.tws.2022.109860
    [14] ZHANG Y Q, JIANG N, ZHOU C B, et al. Mechanical behaviors and failure mechanism of HDPE corrugated pipeline subjected to blasting seismic wave [J]. Alexandria Engineering Journal, 2023, 67: 597–607. doi: 10.1016/j.aej.2022.12.052
    [15] 王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. doi: 10.11883/bzycj-2021-0132

    WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. doi: 10.11883/bzycj-2021-0132
    [16] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册 [M]. 北京: 机械工业出版社, 2020.

    XIN C L, XUE Z Q, TU J, et al. Handbook of common material parameters for finite element analysis [M]. Beijing: China Machine Press, 2020.
    [17] 何兆益, 汪凡, 朱磊, 等. 基于Johnson-Cook黏塑性模型的沥青路面车辙计算 [J]. 重庆交通大学学报(自然科学版), 2010, 29(1): 49–53.

    HE Z Y, WANG F, ZHU L, et al. Rutting calculation of asphalt pavement based on the Johnson-Cook viscoplastic model [J]. Journal of Chongqing Jiaotong University (Natural Science), 2010, 29(1): 49–53.
    [18] 宗香华, 王银, 孔祥振, 等. 错位多次打击下UHPC靶体损伤破坏效应的数值模拟研究 [J]. 高压物理学报, 2024, 38(3): 034201. doi: 10.11858/gywlxb.20230834

    ZONG X H, WANG Y, KONG X Z, et al. Numerical investigation on damage and failure of UHPC targets subjected to dislocation multi-attacks [J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 034201. doi: 10.11858/gywlxb.20230834
    [19] KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. doi: 10.1016/j.ijimpeng.2018.05.006
    [20] 赵凯. 分层防护层对爆炸波的衰减和弥散作用研究 [D]. 合肥: 中国科学技术大学, 2007.

    ZHAO K. The attenuation and dispersion effects on explosive wave of layered protective engineering [D]. Hefei: University of Science and Technology of China, 2007.
    [21] YANG Y Z, FANG Q, KONG X Z. Failure mode and stress wave propagation in concrete target subjected to a projectile penetration followed by charge explosion: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2023, 177: 104595. doi: 10.1016/j.ijimpeng.2023.104595
    [22] 总参谋部工程兵国防工程设计研究所. 防护工程防常规武器结构设计规范: GJB 7404–2023 [S]. 北京: 中国人民解放军总参谋部, 2013.

    The National Defense Engineering Design Institute of the Headquarters of the General Staff. Design specification for protective engineering anti-conventional weapon structure: GJB 7404–2023 [S]. Beijing: The General Staff Headquarters of the PLA, 2013.
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  16
  • PDF下载量:  2
出版历程
  • 收稿日期:  2024-08-23
  • 修回日期:  2024-10-11
  • 录用日期:  2025-01-07
  • 网络出版日期:  2025-02-27
  • 刊出日期:  2025-03-05

目录

    /

    返回文章
    返回