圆柱形装药爆炸驱动球形破片的飞散特性

申仕良 李金柱 马峰 姚志彦

申仕良, 李金柱, 马峰, 姚志彦. 圆柱形装药爆炸驱动球形破片的飞散特性[J]. 高压物理学报, 2025, 39(2): 025101. doi: 10.11858/gywlxb.20240865
引用本文: 申仕良, 李金柱, 马峰, 姚志彦. 圆柱形装药爆炸驱动球形破片的飞散特性[J]. 高压物理学报, 2025, 39(2): 025101. doi: 10.11858/gywlxb.20240865
SHEN Shiliang, LI Jinzhu, MA Feng, YAO Zhiyan. Dispersion Characteristics of Spherical Fragments Driven by Cylindrical Charge[J]. Chinese Journal of High Pressure Physics, 2025, 39(2): 025101. doi: 10.11858/gywlxb.20240865
Citation: SHEN Shiliang, LI Jinzhu, MA Feng, YAO Zhiyan. Dispersion Characteristics of Spherical Fragments Driven by Cylindrical Charge[J]. Chinese Journal of High Pressure Physics, 2025, 39(2): 025101. doi: 10.11858/gywlxb.20240865

圆柱形装药爆炸驱动球形破片的飞散特性

doi: 10.11858/gywlxb.20240865
详细信息
    作者简介:

    申仕良(1999-),男,硕士研究生,主要从事爆炸与冲击动力学研究. E-mail:shen_shiliang@126.com

    通讯作者:

    李金柱(1972-),男,博士,副教授,主要从事爆炸与冲击动力学研究. E-mail:lijinzhu@bit.edu.cn

  • 中图分类号: O389; O521.3

Dispersion Characteristics of Spherical Fragments Driven by Cylindrical Charge

  • 摘要: 为了研究球形预制钨破片在圆柱形装药驱动下的飞散规律,开展了预制破片战斗部飞散试验。针对传统梳状靶无法测量破片群速度分布的问题,设计并制作了一种全新的交叉梳状靶,成功测得了多个破片穿靶产生的脉冲信号和着靶位置。采用LS-DYNA模拟研究了圆柱形装药爆炸驱动球形破片的飞散特性。结果表明:数值模拟结果与试验结果吻合良好,交叉梳状测速靶能够较为准确地测量多个破片的飞散速度;增加装药长径比可以削弱装药两端稀疏波对破片速度的影响,但效果随长径比增加而逐渐减弱。

     

  • 图  试验用弹丸照片

    Figure  1.  Photo of projectile in the test

    图  球形破片交错紧密排布方式

    Figure  2.  Staggered tight arrangement of spherical fragments

    图  交叉梳状靶结构示意图

    Figure  3.  Schematic diagram of cross-combed target structure

    图  试验所用交叉梳状靶照片

    Figure  4.  Cross-combed targets used in the test

    图  预制破片测速装置

    Figure  5.  Velocity measurement system of preformed fragment

    图  爆炸试验布局

    Figure  6.  Layout of explosion test

    图  理论着靶破片列数示意图

    Figure  7.  Schematic diagram of the theoretical number of fragment penetration rows

    图  由Shapiro公式得到的飞散角沿装药轴线方向的分布

    Figure  8.  Distribution of dispersion angles along the charge axis direction obtained by Shapiro’s equation

    图  不同测速靶上的破片穿孔情况

    Figure  9.  Fragment perforations on different velocity measurement targets

    图  10  破片穿透梳状靶的局部状态

    Figure  10.  Localized condition of fragment penetrations through the comb-shaped target

    图  11  测速靶3的前靶和后靶穿孔分布

    Figure  11.  Fragment perforation distribution on the front and rear targets of the velocity measurement target 3

    图  12  破片穿靶后产生的典型脉冲信号

    Figure  12.  Typical pulse signal generated after fragment penetration of the target

    图  13  有限元模型

    Figure  13.  Finite element model

    图  14  破片速度沿装药轴线的分布

    Figure  14.  Distribution of fragments velocity along the axis of charge

    图  15  破片飞散角沿装药轴线的分布

    Figure  15.  Distribution of dispersion angle along the axis of charge

    图  16  不同长径比装药结构的破片速度沿轴线的分布

    Figure  16.  Distribution of fragments velocity along the axis of charges with different length-to-diameter ratios

    表  1  速度测量中靶板设置

    Table  1.   Target plate setting for velocity measurement

    Test No.Target No.l/m
    112.40
    222.50
    332.53
    442.53
    下载: 导出CSV

    表  2  各交叉梳状靶上破片穿孔数统计

    Table  2.   Statistics of the number of fragment perforations on each cross-combed target

    Target No.Number of perforations
    1st column2nd column3rd column4th columnTotal
    11211121247
    21211111347
    31211121247
    41214121250
    下载: 导出CSV

    表  3  测速靶3上着靶破片的飞散角

    Table  3.   Dispersion angles of the fragments on the velocity measurement target 3

    Serial No.$ \theta $/(°)
    1st column2nd column3rd column4th column
    110.308.7010.729.07
    26.324.345.853.66
    33.341.222.851.18
    41.361.081.900.85
    51.692.851.041.10
    62.903.802.672.71
    74.974.404.994.44
    85.425.045.474.95
    98.599.458.725.06
    108.6110.108.908.46
    119.9910.879.959.48
    1211.7010.6611.13
    下载: 导出CSV

    表  4  试验测得的破片飞散速度

    Table  4.   Measured fragment dispersion velocities from the test

    Serial No. v/(m·s−1) Serial No. v/(m·s−1)
    1st column 2nd column 1st column 2nd column
    1 874.96 988.41 7 1457.39 1489.04
    2 970.88 964.78 8 1508.74 1543.37
    3 1105.71 1142.22 9 1562.08 1564.86
    4 1090.10 1055.14 10 1564.89 1483.69
    5 1256.42 1396.95 11 1385.48 1380.44
    6 1380.11 1425.48 12 1276.79
    下载: 导出CSV

    表  5  93钨球形破片的材料参数

    Table  5.   Material parameters of 93 tungsten spherical fragments

    ρ/(g·cm−3) σs/GPa E/GPa G/GPa μ
    17.6 1.506 300 137 0.22
    下载: 导出CSV

    表  6  8701炸药性能参数

    Table  6.   8701 explosive performance parameters

    ρ/(g·cm−3) vD/(km·s−1) pCJ/GPa A/GPa B/GPa R1 R2
    1.7 8.3 30 581.4 9.8016 4.1 1.4
    下载: 导出CSV

    表  7  不同长径比下的破片速度

    Table  7.   Fragments velocities under varying length-to-diameter ratios

    L/Dvmax/(m·s−1)vmin/(m·s−1)vave/(m·s−1)
    11432.98956.721244.25
    21629.43963.781447.54
    31737.14993.591557.48
    41755.82961.621600.81
    下载: 导出CSV
  • [1] 洪豆, 郑宇, 李文彬, 等. 破片战斗部杀伤面积影响规律研究 [J]. 兵器装备工程学报, 2021, 42(5): 37–42. doi: 10.11809/bqzbgcxb2021.05.007

    HONG D, ZHENG Y, LI W B, et al. Research on influence law of fragment warhead’s killing area [J]. Journal of Ordnance Equipment Engineering, 2021, 42(5): 37–42. doi: 10.11809/bqzbgcxb2021.05.007
    [2] GURNEY R W. The initial velocities of fragments from bombs, shells and grenades: BRL 405 [R]. Maryland: Army Ballistic Research Laboratory, 1943.
    [3] ZULKOSKI T. Development of optimum theoretical warhead design criteria: B015617 [R]. China Lake, California: Naval Weapons Center, 1976: 39–44.
    [4] CHARRON Y J. Estimation of velocity distribution of fragmenting warheads using a modified Gurney method [D]. Wright Patterson: Air Force Institute of Technology, 1979.
    [5] HENNEQUIN E. Influence of the edge effects on the initial velocities of fragments from a warhead [C]//Proceedings of the 9th International Symposium on Ballistics. Shrivenham, 1986.
    [6] POOLE C J, OCKENDON J, CURTIS J. Gas leakage from fragmentation warheads [C]//Proceedings of the 20th International Symposium on Ballistics. Florida, 2002.
    [7] 蒋浩征. 杀伤战斗部破片飞散初速v0的计算 [J]. 兵工学报, 1980(1): 68–79.

    JIANG H Z. Calculation of initial velocity v0 of fragments of a lethal warhead [J]. Acta Armamentarii, 1980(1): 68–79.
    [8] BACKOFEN J E. The effects of cylinder geometry and material on Gurney velocities and gas-push Gurney velocities measured during cylinder test experiments [R]. Oak Hill: BRIGS, 2002.
    [9] 宋锋, 蒋建伟. 杀爆战斗部设计专家系统研究 [J]. 弹箭与制导学报, 2007, 27(4): 119–122. doi: 10.3969/j.issn.1673-9728.2007.04.035

    SONG F, JIANG J W. Research on the expert design system of blast and fragmentation warhead [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, 27(4): 119–122. doi: 10.3969/j.issn.1673-9728.2007.04.035
    [10] TAYLOR G I. The fragmentation of tubular bombs [J]. Scientific Papers of GI Taylor, 1963, 3(44): 387–390.
    [11] LI Y, CHEN D, JIANG M, et al. Research on the characteristic of projectile fragments dispersion based on fragment warhead design [J]. IOP Conference Series: Materials Science and Engineering, 2019, 573: 012104. doi: 10.1088/1757-899X/573/1/012104
    [12] 冯顺山, 崔秉贵. 战斗部破片初速轴向分布规律的实验研究 [J]. 兵工学报, 1987(4): 60–63.

    FENG S S, CUI B G. An experimental investigation for the axial distribution of initial velocity of shells [J]. Acta Armamentarii, 1987(4): 60–63.
    [13] HUANG G Y, LI W, FENG S S. Axial distribution of fragment velocities from cylindrical casing under explosive loading [J]. International Journal of Impact Engineering, 2015, 76: 20–27. doi: 10.1016/j.ijimpeng.2014.08.007
    [14] 王高, 尹国鑫, 李仰军, 等. 电阻网靶破片群速度测量方法 [J]. 探测与控制学报, 2011, 33(3): 47–50, 55. doi: 10.3969/j.issn.1008-1194.2011.03.011

    WANG G, YIN G X, LI Y J, et al. Fragments velocity measuring based on resistor net target [J]. Journal of Detection & Control, 2011, 33(3): 47–50, 55. doi: 10.3969/j.issn.1008-1194.2011.03.011
    [15] 田会, 金朋刚, 田亚男, 等. 一种用于破片测速的环形光幕装置 [J]. 测试技术学报, 2018, 32(4): 353–357. doi: 10.3969/j.issn.1671-7449.2018.04.014

    TIAN H, JIN P G, TIAN Y N, et al. Study on the circular ring light screen device for measuring velocity of flying fragments [J]. Journal of Test and Measurement Technology, 2018, 32(4): 353–357. doi: 10.3969/j.issn.1671-7449.2018.04.014
    [16] 马竹新, 王代华, 张瑞刚, 等. 基于可变阻抗靶网的多通道破片测速系统 [J]. 现代电子技术, 2022, 45(11): 83–87. doi: 10.16652/j.issn.1004⁃373x.2022.11.016

    MA Z X, WANG D H, ZHANG R G, et al. Burst fragment’s multi-channel speed measuring system based on variable impedance target [J]. Modern Electronics Technique, 2022, 45(11): 83–87. doi: 10.16652/j.issn.1004⁃373x.2022.11.016
    [17] 戴志远, 闫克丁. 基于高速相机的破片速度计算方法 [J]. 计算机与数字工程, 2021, 49(8): 1647–1650. doi: 10.3969/j.issn.1672-9722.2021.08.028

    DAI Z Y, YAN K D. Fragment velocity calculation method based on high speed camera [J]. Computer & Digital Engineering, 2021, 49(8): 1647–1650. doi: 10.3969/j.issn.1672-9722.2021.08.028
    [18] 史志鑫, 尹建平. 起爆方式对预制破片飞散性能影响的数值模拟研究 [J]. 兵器装备工程学报, 2018, 39(12): 84–88. doi: 10.11809/bqzbgcxb2018.12.017

    SHI Z X, YIN J P. Numerical simulation study on effect of detonation method on the dispersion performance of prefabricated fragments [J]. Journal of Ordnance Equipment Engineering, 2018, 39(12): 84–88. doi: 10.11809/bqzbgcxb2018.12.017
    [19] 邓吉平, 胡毅亭, 贾宪振, 等. 爆炸驱动球形破片飞散的数值模拟 [J]. 弹道学报, 2008, 20(4): 96–99.

    DENG J P, HU Y T, JIA X Z, et al. Numerical simulation of scattering characteristics of spherical fragment under blasting [J]. Journal of Ballistics, 2008, 20(4): 96–99.
    [20] 刘荣琦. 预制破片爆轰过程模拟与仿真 [D]. 沈阳: 沈阳理工大学, 2023.

    LIU R Q. Simulation and simulation of detonation process of prefabricated fragments [D]. Shenyang: Shenyang Ligong University, 2023.
    [21] 李明星, 王志军, 黄阳洋, 等. 不同形状轴向预制破片的飞散特性研究 [J]. 兵器装备工程学报, 2017, 38(12): 65–69. doi: 10.11809/scbgxb2017.12.016

    LI M X, WANG Z J, HUANG Y Y, et al. Study on the scattering characteristics of different shape axial prefabricated fragment [J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 65–69. doi: 10.11809/scbgxb2017.12.016
    [22] 李明静. 破片和冲击波对典型飞机机翼联合毁伤效应的研究 [D]. 北京: 北京理工大学, 2020.

    LI M J. Research on combined effects of fragment and blast loading on the wing of typical aircraft [D]. Beijing: Beijing Institute of Technology, 2020.
    [23] 马宏伟, 王珂, 李艳, 等. 基于数字图像处理的破片速度参数测量 [J]. 测试技术学报, 2004, 18(4): 355–358. doi: 10.3969/j.issn.1671-7449.2004.04.017

    MA H W, WANG K, LI Y, et al. Fragment velocity measurement based on digital image processing [J]. Journal of Test and Measurement Technology, 2004, 18(4): 355–358. doi: 10.3969/j.issn.1671-7449.2004.04.017
    [24] 李丽萍, 孔德仁, 易春林, 等. 战斗部破片速度测量方法综述 [J]. 测控技术, 2014, 33(11): 5–7, 13. doi: 10.3969/j.issn.1000-8829.2014.11.002

    LI L P, KONG D R, YI C L, et al. Review of method to measure the velocity of warhead fragments [J]. Measurement & Control Technology, 2014, 33(11): 5–7, 13. doi: 10.3969/j.issn.1000-8829.2014.11.002
    [25] 谭多望, 王广军, 龚晏青, 等. 球形钨合金破片空气阻力系数实验研究 [J]. 高压物理学报, 2007, 21(3): 231–236. doi: 10.11858/gywlxb.2007.03.002

    TAN D W, WANG G J, GONG Y Q, et al. Experimental studies on air drag coefficient of spherical tungsten fragments [J]. Chinese Journal of High Pressure Physics, 2007, 21(3): 231–236. doi: 10.11858/gywlxb.2007.03.002
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  33
  • PDF下载量:  8
出版历程
  • 收稿日期:  2024-08-05
  • 修回日期:  2024-08-28
  • 网络出版日期:  2024-10-31
  • 刊出日期:  2025-04-03

目录

    /

    返回文章
    返回