基于活跃子空间的爆压不确定度传递分析

梁霄 范孟君 王言金 王瑞利

梁霄, 范孟君, 王言金, 王瑞利. 基于活跃子空间的爆压不确定度传递分析[J]. 高压物理学报, 2025, 39(2): 022401. doi: 10.11858/gywlxb.20240862
引用本文: 梁霄, 范孟君, 王言金, 王瑞利. 基于活跃子空间的爆压不确定度传递分析[J]. 高压物理学报, 2025, 39(2): 022401. doi: 10.11858/gywlxb.20240862
LIANG Xiao, FAN Mengjun, WANG Yanjin, WANG Ruili. Uncertainty Propagation Analysis of Detonation Pressure Based on Active Subspace[J]. Chinese Journal of High Pressure Physics, 2025, 39(2): 022401. doi: 10.11858/gywlxb.20240862
Citation: LIANG Xiao, FAN Mengjun, WANG Yanjin, WANG Ruili. Uncertainty Propagation Analysis of Detonation Pressure Based on Active Subspace[J]. Chinese Journal of High Pressure Physics, 2025, 39(2): 022401. doi: 10.11858/gywlxb.20240862

基于活跃子空间的爆压不确定度传递分析

doi: 10.11858/gywlxb.20240862
基金项目: 国家自然科学基金(12171047);国家自然科学基金委-中国工程物理研究院NSAF联合基金(U2230208); 山东省自然科学基金(ZR2021BA056);国家留学基金委公派访学项目(CSC202308370209)
详细信息
    作者简介:

    梁 霄(1984-),男,博士,副教授,主要从事爆轰不确定度量化研究. E-mail:mathlx@163.com

  • 中图分类号: O241; O521.3

Uncertainty Propagation Analysis of Detonation Pressure Based on Active Subspace

  • 摘要: 爆压间接标定中的不确定度无法消除,不确定度量化能提高模型的可信度和预测能力。然而,爆压间接标定函数具有复杂非线性结构耦合多输入变量等特征,使得爆压不确定度传播研究遇到“维数灾难”等问题。活跃子空间是处理爆压不确定度量化的有效工具。首先,导出系统响应量(system response quantity, SRQ)的梯度协方差矩阵;然后,基于Monte Carlo方法,寻找活跃变量,即SRQ变化最快的方向;接着,将高维输入不确定度转化成一维空间处理,避免了“维数灾难”;最后,建立基于一维活跃变量的四阶多项式响应面模型。结果表明,活跃子空间方法成功刻画了输入不确定度对SRQ的影响,且试验结果落在代理模型预测值的置信区间内,确认了爆压模型的预测能力。研究还发现,爆压的离散程度较大,与孙承纬的结论吻合。此外,建立了一种新的爆压模型。该模型是仿射变换与多项式函数的复合运算,具有形式简洁、光滑性好、鲁棒能力强、运算速度快的特点,且系统输入量是随机变量而非固定值,多项式拟合系数不因输入不确定度的变化而改变。该研究方法具备体系性,可以推广到其他类型的炸药爆压预测。

     

  • 图  基于AS的降维流程

    Figure  1.  Flow chart of dimensionality reduction based on active subspace

    图  输入不确定度的概率密度函数

    Figure  2.  PDF of the input uncertainty

    图  对数尺度下特征值的分布

    Figure  3.  Distribution of eigenvalues for the logarithmic scale

    图  活跃变量Y的概率密度函数

    Figure  4.  PDF of the active variable Y

    图  基于AS的爆压的概率密度函数

    Figure  5.  PDF of detonation pressure deduced from active subspace

    图  AS和Monte Carlo方法得到的爆压的概率密度函数

    Figure  6.  PDF of detonation pressure deduced from AS and Monte Carlo methods

    表  1  爆压的试验和统计结果

    Table  1.   Test and statistical results of the detonation pressure GPa

    Statistical resultsTest data[2]
    MeanStandard deviationUpper confidence limitLower confidence limit
    34.671.5136.0132.7534.41
    下载: 导出CSV
  • [1] 孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 216–239.

    SUN C W, WEI Y Z, ZHOU Z K. Applied detonation physics [M]. Beijing: National Defense Industry Press, 2000: 216–239.
    [2] MADER C L. Numerical modeling of explosives and propellants [M]. 3rd ed. Boca Raton: CRC Press, 2008.
    [3] LIANG X, WANG R, GHANEM R. Uncertainty quantification of detonation through adapted polynomial chaos [J]. International Journal for Uncertainty Quantification, 2020, 10(1): 83–100. doi: 10.1615/Int.J.UncertaintyQuantification.2020030630
    [4] LIANG X, WANG R L. Verification and validation of detonation modeling [J]. Defence Technology, 2019, 15(3): 398–408. doi: 10.1016/j.dt.2018.11.005
    [5] 梁霄, 王瑞利, 胡星志, 等. 基于多项式混沌方法对C-J爆轰参数不确定度的分析 [J]. 爆炸与冲击, 2023, 43(10): 104202. doi: 10.11883/bzycj-2023-0030

    LIANG X, WANG R L, HU X Z, et al. Uncertainty analysis of C-J detonation parameters based on polynomial chaos theory [J]. Explosion and Shock Waves, 2023, 43(10): 104202. doi: 10.11883/bzycj-2023-0030
    [6] 舒俊翔, 裴红波, 黄文斌, 等. 几种常用炸药的爆压与爆轰反应区精密测量 [J]. 爆炸与冲击, 2022, 42(5): 052301. doi: 10.11883/bzycj-2021-0305

    SHU J X, PEI H B, HUANG W B, et al. Accurate measurements of detonation pressure and detonation reaction zones of several commonly-used explosives [J]. Explosion and Shock Waves, 2022, 42(5): 052301. doi: 10.11883/bzycj-2021-0305
    [7] 赵万广, 周显明, 李加波, 等. LiF单晶的高压折射率及窗口速度的修正 [J]. 高压物理学报, 2014, 28(5): 571–576. doi: 10.11858/gywlxb.2014.05.010

    ZHAO W G, ZHOU X M, LI J B, et al. Refractive index of LiF single crystal at high pressure and its window correction [J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 571–576. doi: 10.11858/gywlxb.2014.05.010
    [8] 戴诚达, 王翔, 谭华. Hugoniot实验的粒子速度测量不确定度分析 [J]. 高压物理学报, 2005, 19(2): 113–119. doi: 10.11858/gywlxb.2005.02.003

    DAI C D, WANG X, TAN H. Evaluation for uncertainty of particle velocity in Hugoniot measurements [J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 113–119. doi: 10.11858/gywlxb.2005.02.003
    [9] 梁霄, 王瑞利. 基于冲击Hugoniot关系的爆压性质和不确定度量化 [J]. 兵工学报, 2024, 45(5): 1673–1680. doi: 10.12382/bgxb.2022.1207

    LIANG X, WANG R L. Property and uncertainty quantification of detonation pressure based on shock Hugoniot relationship [J]. Acta Armamentarii, 2024, 45(5): 1673–1680. doi: 10.12382/bgxb.2022.1207
    [10] WILKINS M L. Computer simulation of dynamic phenomena [M]. Berlin: Springer, 1999.
    [11] BENNER P, MEHRMANN V, SORENSEN D C. Dimension reduction of large-scale systems [M]. Berlin: Springer, 2005.
    [12] HUGHES K T, CHARONKO J J, PRESTRIDGE K P, et al. Proton radiography of explosively dispersed metal particles with varying volume fraction and varying carrier phase [J]. Shock Waves, 2021, 31(1): 75–88. doi: 10.1007/s00193-020-00983-8
    [13] CONSTANTINE P G, DOW E, WANG Q Q. Active subspace methods in theory and practice: applications to kriging surfaces [J]. SIAM Journal on Scientific Computing, 2014, 36(4): A1500–A1524. doi: 10.1137/130916138
    [14] CONSTANTINE P G. Active subspaces: emerging ideas for dimension reduction in parameter studies [M]. Philadelphia: Society for Industrial and Applied Mathematics, 2015: 21–88.
    [15] CONSTANTINE P G, EMORY M, LARSSON J, et al. Exploiting active subspaces to quantify uncertainty in the numerical simulation of the HyShot Ⅱ scramjet [J]. Journal of Computational Physics, 2015, 302: 1–20. doi: 10.1016/j.jcp.2015.09.001
    [16] WEI J L, AN J, ZHANG Q, et al. Exploiting active subspaces for geometric optimization of cavity-stabilized supersonic flames [J]. AIAA Journal, 2023, 61(8): 3353–3364. doi: 10.2514/1.J062748
    [17] CORTESI A F, CONSTANTINE P G, MAGIN T E, et al. Forward and backward uncertainty quantification with active subspaces: application to hypersonic flows around a cylinder [J]. Journal of Computational Physics, 2020, 407: 109079. doi: 10.1016/j.jcp.2019.109079
    [18] KIM J, WANG Z Q, SONG J. Adaptive active subspace-based metamodeling for high-dimensional reliability analysis [J]. Structural Safety, 2024, 106: 102404. doi: 10.1016/j.strusafe.2023.102404
    [19] GREY Z J, CONSTANTINE P G. Active subspaces of airfoil shape parameterizations [J]. AIAA Journal, 2018, 56(5): 2003–2017. doi: 10.2514/1.J056054
    [20] HU X Z, CHEN X Q, LATTARULO V, et al. Multidisciplinary optimization under high-dimensional uncertainty for small satellite system design [J]. AIAA Journal, 2016, 54(5): 1732–1741. doi: 10.2514/1.J054627
    [21] 胡星志. 活跃子空间降维不确定性设计优化方法及其航天应用 [M]. 北京: 中国宇航出版社, 2023.

    HU X Z. Uncertainty-based design optimization approach and aerospace application with active subspace dimension reduction [M]. Beijing: China Astronautic Publishing House, 2023.
    [22] 王娜娜, 解青, 苏星宇, 等. 湍流燃烧机理和调控的活性子空间分析方法 [J]. 航空学报, 2021, 42(12): 625228. doi: 10.7527/S1000-6893.2021.25228

    WANG N N, XIE Q, SU X Y, et al. Active subspace methods for analysis and optimization of turbulent combustion [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 625228. doi: 10.7527/S1000-6893.2021.25228
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  26
  • PDF下载量:  6
出版历程
  • 收稿日期:  2024-07-26
  • 修回日期:  2024-08-24
  • 网络出版日期:  2024-11-01
  • 刊出日期:  2025-04-03

目录

    /

    返回文章
    返回