不同数量碳纤维布条带约束煤样的轴压蠕变特性细观模拟研究

李庆文 高翔 谭正林 张帅帅 徐康康 才诗婷

李庆文, 高翔, 谭正林, 张帅帅, 徐康康, 才诗婷. 不同数量碳纤维布条带约束煤样的轴压蠕变特性细观模拟研究[J]. 高压物理学报. doi: 10.11858/gywlxb.20240861
引用本文: 李庆文, 高翔, 谭正林, 张帅帅, 徐康康, 才诗婷. 不同数量碳纤维布条带约束煤样的轴压蠕变特性细观模拟研究[J]. 高压物理学报. doi: 10.11858/gywlxb.20240861
LI Qingwen, GAO Xiang, TAN Zhenglin, ZHANG Shuaishuai, XU Kangkang, CAI Shiting. Microscopic Simulation Study on Uniaxial Compressive Creep Characteristics of Coal Samples Constrained by Different Numbers of Carbon Fiber Reinforced Polymer Strips[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240861
Citation: LI Qingwen, GAO Xiang, TAN Zhenglin, ZHANG Shuaishuai, XU Kangkang, CAI Shiting. Microscopic Simulation Study on Uniaxial Compressive Creep Characteristics of Coal Samples Constrained by Different Numbers of Carbon Fiber Reinforced Polymer Strips[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240861

不同数量碳纤维布条带约束煤样的轴压蠕变特性细观模拟研究

doi: 10.11858/gywlxb.20240861
基金项目: 辽宁省教育厅基本科研面上项目(JYTMS20230866);辽宁省自然科学基金面上项目(2023-MS-298);辽宁省博士科研启动基金(2019-BS-120);辽宁省自然科学基金指导项目(20180550297)
详细信息
    作者简介:

    李庆文(1987-),男,博士,副教授,主要从事岩石力学、新材料与新型组合结构及离散元-有限差分跨尺度耦合细观模拟研究. E-mail:lgjzlqw@163.com

    通讯作者:

    高翔(1998-),男,硕士研究生,主要从事离散元-有限差分跨尺度耦合细观模拟研究. E-mail:1693985067@qq.com

  • 中图分类号: TU45; O521.9

Microscopic Simulation Study on Uniaxial Compressive Creep Characteristics of Coal Samples Constrained by Different Numbers of Carbon Fiber Reinforced Polymer Strips

  • 摘要: 为探究不同数量碳纤维增强复合材料(carbon fiber reinforced polymer, CFRP)条带对轴压煤样蠕变力学特性的影响,耦合PFC3D软件与FLAC3D软件,结合伯格斯(Burger’s)模型与平行黏结(Linearpbond)模型,建立混合接触的细观数值模型。根据未约束煤与6条带CFRP约束煤样单轴压缩蠕变室内试验,验证了数值模型的可靠性。研究了2~7条带CFRP约束煤样在单轴压缩蠕变下的力学特性及能量演化。研究表明:随着条带数的增加,煤样在初始阶段的轴向应变整体呈现增大趋势,加速蠕变阶段轴向应变明显增大;混合接触模型内部接触的最大力整体呈现增大趋势;伯格斯模型接触数量与平行黏结模型接触数量的比值约为1∶9时,数值模拟模型能够反映出煤样蠕变的力学特性;增加CFRP条带数,煤样的径向变形受到限制,产生的剪切微裂纹增多,煤样内部的剪切破坏更加严重,煤样的破坏形态由张拉破坏逐渐向剪切破坏转变;随着碳纤维布条带数量的增加,煤样的总能量、弹性能、耗散能均增加,在煤样发生蠕变失稳前,弹性能的变化与总能量的变化较为相似。

     

  • 图  平行黏结模型接触示意图

    Figure  1.  Schematic diagram of the parallel bonding model for contact

    图  伯格斯模型接触示意图

    Figure  2.  Schematic diagram of the Burger’s model for contact

    图  混合接触模型构建原理

    Figure  3.  Construction principle of mixed contact model

    图  数值模拟中试件接触的构建

    Figure  4.  Specimen contact construction for numerical simulation

    图  模拟和试验获得的素煤样的单轴蠕变-时间曲线

    Figure  5.  Uniaxial creep-time curves of unconfined coal sample obtained by simulation and experiment

    图  CFRP条带载荷-应变曲线

    Figure  6.  Tensile load-axial strain curves of CFRP sheets

    图  CFRP条带约束煤样细观模型

    Figure  7.  Microscale model of coal sample constrained by CFRP strips

    图  6条CFRP条带约束煤样的应变-时间曲线

    Figure  8.  Strain-time curve of coal sample constrained by 6 CFRP strips

    图  不同数量CFRP条带约束煤样的应变-时间曲线

    Figure  9.  Strain-time curves for coal samples constrained by different numbers of CFRP strip

    图  10  不同数量CFRP条带约束的煤样的破坏形态

    Figure  10.  Damage patterns for coal samples constrained by different numbers of CFRP strip

    图  11  不同数量CFRP条带约束煤样破坏时混合接触模型

    Figure  11.  Mixed contact model for coal samples at failure constrained by different numbers of CFRP strip

    图  12  不同数量CFRP条带约束煤样破坏时的裂隙空间分布

    Figure  12.  Spatial distribution of cracks in damaged coal samples constrained by different numbers of CFRP strip

    图  13  不同数量CFRP条带约束煤样轴压蠕变时的裂纹演化曲线

    Figure  13.  Crack evolution curves for coal samples constrained by different numbers of CFRP strips under axial compression creep test

    图  14  能量计算原理[3233]

    Figure  14.  Principle of energy calculation[3233]

    图  15  2~7 CFRP条带约束煤样的能量演化

    Figure  15.  Energy evolution in coal samples constrained by 2–7 CFRP strips

    表  1  接触模型的细观参数

    Table  1.   Microscopic parameters of contact model

    Linearpbond model
    Linearpbond effective modulus/GPa Linearpbond
    stiffness ratio
    Normal bond strength/MPa Tangential bond strength/MPa Coefficient of friction Angle of friction/(°)
    1 1.4 10 10 1.5 50
    Burger’s model
    Maxwell bulk modulus/MPa Maxwell viscosity coefficient/(MPa·s) Kelvin bulk modulus/MPa Kelvin viscosity coefficient/(MPa·s) Coefficient of
    friction
    1 90 10 1 1.5
    下载: 导出CSV

    表  2  CFRP条带模型参数

    Table  2.   Model parameters of CFRP sheets

    Tg/MPa Eg/GPa t/(mm·ply−1) φi/(°)
    918.07 47.54 0.167 30
    下载: 导出CSV

    表  3  不同数量CFRP条带约束煤样破坏时的力链

    Table  3.   Force chains in coal samples at failure constrained by different numbers of CFRP strip

    Number of stripsNumber of contactsMaximum contact force/N
    230511434.7
    328852534.9
    429378678.2
    528609570.7
    625655979.5
    7257471121.7
    下载: 导出CSV

    表  4  不同数量CFRP条带约束煤样破坏时的裂隙数量

    Table  4.   Number of cracks in the failure of coal samples constrained by different numbers of CFRP strip

    Nunber of strips Number of tension cracks Number of shear cracks Total number of cracks
    2 1420 7 1427
    3 3014 287 3301
    4 2167 389 2556
    5 2553 1107 3660
    6 6832 2457 9289
    7 4295 5012 9307
    下载: 导出CSV
  • [1] 蒋威. 厚硬基本顶综放开采沿空巷道变形破坏机制及控制 [D]. 北京: 中国矿业大学(北京), 2021.

    JIANG W. Deformation mechanism and stability control of roadway along goaf in fully mechanized top coal caving face with thick and hard roof [D]. Beijing: China University of Mining & Technology-Beijing, 2021.
    [2] ZHAO T B, GUO W Y, TAN Y L, et al. Case studies of rock bursts under complicated geological conditions during multi-seam mining at a depth of 800 m [J]. Rock Mechanics and Rock Engineering, 2018, 51(5): 1539–1564. doi: 10.1007/s00603-018-1411-7
    [3] ZHU W B, CHEN L, ZHOU Z L, et al. Failure propagation of pillars and roof in a room and pillar mine induced by longwall mining in the lower seam [J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 1193–1209. doi: 10.1007/s00603-018-1630-y
    [4] JIANG S Y, FAN G W, LI Q Z, et al. Effect of mining parameters on surface deformation and coal pillar stability under customized shortwall mining of deep extra-thick coal seams [J]. Energy Reports, 2021, 7: 2138–2154. doi: 10.1016/J.EGYR.2021.04.008
    [5] CAO Y, XU J H, CHEN L, et al. Experimental study on granite acoustic emission and micro-fracture behavior with combined compression and shear loading: phenomenon and mechanism [J]. Scientific Reports, 2020, 10(1): 22051. doi: 10.1038/s41598-020-78137-0
    [6] YANG Y J, DUAN H Q, XING L Y, et al. Fatigue characteristics of coal specimens under cyclic uniaxial loading [J]. Geotechnical Testing Journal, 2019, 42(2): 331–346. doi: 10.1520/GTJ20170263
    [7] 王波, 谷长宛, 王军, 等. 对穿锚索加固作用下沿空掘巷留设煤柱承压性能试验研究 [J]. 中国矿业大学学报, 2020, 49(2): 262–270. doi: 10.13247/j.cnki.jcumt.001125

    WANG B, GU C W, WANG J, et al. Bearing capacity experimental study of coal pillar in the gob-side entry driving under the reinforcement of inflatable lock-type anchor [J]. Journal of China University of Mining & Technology, 2020, 49(2): 262–270. doi: 10.13247/j.cnki.jcumt.001125
    [8] 赵国贞, 马占国, 孙凯, 等. 小煤柱沿空掘巷围岩变形控制机理研究 [J]. 采矿与安全工程学报, 2010, 27(4): 517–521. doi: 10.3969/j.issn.1673-3363.2010.04.013

    ZHAO G Z, MA Z G, SUN K, et al. Research on deformation controlling mechanism of the narrow pillar of roadway driving along next goaf [J]. Journal of Mining & Safety Engineering, 2010, 27(4): 517–521. doi: 10.3969/j.issn.1673-3363.2010.04.013
    [9] 陈绍杰, 张俊文, 尹大伟, 等. 充填墙提升煤柱性能机理与数值模拟研究 [J]. 采矿与安全工程学报, 2017, 34(2): 268–275. doi: 10.13545/j.cnki.jmse.2017.02.010

    CHEN S J, ZHANG J W, YIN D W, et al. Mechanism and numerical simulation of filling walls improving performance of coal pillar [J]. Journal of Mining & Safety Engineering, 2017, 34(2): 268–275. doi: 10.13545/j.cnki.jmse.2017.02.010
    [10] 张洪伟, 万志军, 张源, 等. 工作面顺序接续下综放沿空掘巷窄煤柱稳定性控制 [J]. 煤炭学报, 2021, 46(4): 1211–1219. doi: 10.13225/j.cnki.jccs.2020.0028

    ZHANG H W, WAN Z J, ZHANG Y, et al. Stability control of narrow coal pillars in the fully-mechanized gob-side entry during sequenced top coal caving mining [J]. Journal of China Coal Society, 2021, 46(4): 1211–1219. doi: 10.13225/j.cnki.jccs.2020.0028
    [11] WANG Z Y, FENG P, ZHAO Y, et al. FRP-confined concrete core-encased rebar for RC columns: concept and axial compressive behavior [J]. Composite Structures, 2019, 222: 110915. doi: 10.1016/j.compstruct.2019.110915
    [12] SIWOWSKI T, RAJCHEL M. Structural performance of a hybrid FRP composite-lightweight concrete bridge girder [J]. Composites Part B: Engineering, 2019, 174: 107055. doi: 10.1016/j.compositesb.2019.107055
    [13] AL-SAADI N T K, MOHAMMED A, AL-MAHAIDI R, et al. A state-of-the-art review: near-surface mounted FRP composites for reinforced concrete structures [J]. Construction and Building Materials, 2019, 209: 748–769. doi: 10.1016/j.conbuildmat.2019.03.121
    [14] JYOTI D A, KUMAR M P, NATH G C, et al. Extraction of locked-up coal by strengthening of rib pillars with FRP-A comparative study through numerical modelling [J]. International Journal of Mining Science and Technology, 2017, 27(2): 261–267. doi: 10.1016/j.ijmst.2017.01.024
    [15] ZOU X X, D’ANTINO T, SNEED L H. Investigation of the bond behavior of the fiber reinforced composite-concrete interface using the finite difference method (FDM) [J]. Composite Structures, 2021, 278: 114643. doi: 10.1016/j.compstruct.2021.114643
    [16] XU C X, WU Y A, LIU X Q, et al. Experimental research on seismic behavior of seismic-damaged double-deck viaduct frame pier strengthened with CFRP and enveloped steel [J]. Materials, 2022, 15(23): 8668. doi: 10.3390/ma15238668
    [17] 马超, 王作虎, 路德春, 等. CFRP加固地铁车站结构中柱地震损伤评价研究 [J]. 岩土工程学报, 2020, 42(12): 2249–2256. doi: 10.11779/CJGE202012011

    MA C, WANG Z H, LU D C, et al. Seismic damage evaluation of CFRP-strengthened columns in subway stations [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2249–2256. doi: 10.11779/CJGE202012011
    [18] GRIGGS D. Creep of rocks [J]. The Journal of Geology, 1939, 47(3): 225–251. doi: 10.1086/624775
    [19] ZHAO Z, WU P, WANG L, et al. Influence of moisture content on creep mechanical characteristic and mic-fracture behavior of water-bearing coal specimen [J]. Geofluids, 2022, 2022: 4014462. doi: 10.1155/2022/4014462
    [20] WANG D B, ZLOTNIK S, DÍEZ P, et al. A numerical study on hydraulic fracturing problems via the proper generalized decomposition method [J]. Computer Modeling in Engineering & Sciences, 2020, 122(2): 703–720. doi: 10.32604/cmes.2020.08033
    [21] XIA C, LIU Z, ZHOU C Y. Burger’s bonded model for distinct element simulation of the multi-factor full creep process of soft rock [J]. Journal of Marine Science and Engineering, 2021, 9(9): 945. doi: 10.3390/jmse9090945
    [22] 袁海平, 曹平, 许万忠, 等. 岩石粘弹塑性本构关系及改进的Burgers蠕变模型 [J]. 岩土工程学报, 2006, 28(6): 796–799. doi: 10.3321/j.issn:1000-4548.2006.06.024

    YUAN H P, CAO P, XU W Z, et al. Visco-elastop-lastic constitutive relationship of rock and modified Burgers creep model [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 796–799. doi: 10.3321/j.issn:1000-4548.2006.06.024
    [23] HE P F, KULATILAKE P H S W, YANG X X, et al. Detailed comparison of nine intact rock failure criteria using polyaxial intact coal strength data obtained through PFC3D simulations [J]. Acta Geotechnica, 2018, 13(2): 419–445. doi: 10.1007/s11440-017-0566-9
    [24] ZHANG L, REN T, LI X C, et al. Acoustic emission, damage and cracking evolution of intact coal under compressive loads: experimental and discrete element modelling [J]. Engineering Fracture Mechanics, 2021, 252: 107690. doi: 10.1016/j.engfracmech.2021.107690
    [25] 王刚, 王锐, 武猛猛, 等. 渗透压-应力耦合作用下煤体常规三轴试验的颗粒流模拟 [J]. 岩土力学, 2016, 37(Suppl 1): 537–546. doi: 10.16285/j.rsm.2016.S1.070

    WANG G, WANG R, WU M M, et al. Simulation of conventional triaxial test on coal under hydro-mechanical coupling by particle flow code [J]. Rock and Soil Mechanics, 2016, 37(Suppl 1): 537–546. doi: 10.16285/j.rsm.2016.S1.070
    [26] LI W J, HAN Y H, WANG T, et al. DEM micromechanical modeling and laboratory experiment on creep behavior of salt rock [J]. Journal of Natural Gas Science and Engineering, 2017, 46: 38–46. doi: 10.1016/j.jngse.2017.07.013
    [27] 谭鑫, 曹明, 冯龙健, 等. 土工织物包裹碎石桩力学特性的数值模拟研究 [J]. 中国公路学报, 2020, 33(9): 136–145. doi: 10.3969/j.issn.1001-7372.2020.09.014

    TAN X, CAO M, FENG L J, et al. Numerical study on mechanical behaviors of geotextile-wrapped stone column [J]. China Journal of Highway and Transport, 2020, 33(9): 136–145. doi: 10.3969/j.issn.1001-7372.2020.09.014
    [28] 郭润兰, 范雅琼, 王广书, 等. 基于PFC3D的机床床身用树脂矿物复合材料损伤性能细观研究 [J]. 复合材料学报, 2022, 39(2): 834–844. doi: 10.13801/j.cnki.fhclxb.20210420.004

    GUO R L, FAN Y Q, WANG G S, et al. Meso-scale study on damage performance of resin mineral composite material for machine tool bed based on PFC3D [J]. Acta Materiae Compositae Sinica, 2022, 39(2): 834–844. doi: 10.13801/j.cnki.fhclxb.20210420.004
    [29] 石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用 [M]. 北京: 中国建筑工业出版社, 2018.

    SHI C, ZHANG Q, WANG S N. Numerical simulation technology and application with particle flow code (PFC 5.0) [M]. Beijing: China Architecture & Building Press, 2018.
    [30] 李庆文, 胡露露, 曹行, 等. CFRP布均匀约束煤圆柱轴压性能 [J]. 复合材料学报, 2022, 39(11): 5611–5624. doi: 10.13801/j.cnki.fhclxb.20211201.001

    LI Q W, HU L L, CAO H, et al. Axial compressive behavior of CFRP uniformly wrapped coal in circular columns [J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5611–5624. doi: 10.13801/j.cnki.fhclxb.20211201.001
    [31] 胡光辉, 徐涛, 陈崇枫, 等. 基于离散元法的脆性岩石细观蠕变失稳研究 [J]. 工程力学, 2018, 35(9): 26–36. doi: 10.6052/j.issn.1000-4750.2017.05.0356

    HU G H, XU T, CHEN C F, et al. A microscopic study of creep and fracturing of brittle rocks based on discrete element method [J]. Engineering Mechanics, 2018, 35(9): 26–36. doi: 10.6052/j.issn.1000-4750.2017.05.0356
    [32] 李庆文, 高森林, 胡露露, 等. 不同加载速率下非均质煤样能量耗散损伤本构关系 [J]. 煤炭学报, 2022, 47(Suppl 1): 90–102. doi: 10.13225/j.cnki.jccs.2022.0163

    LI Q W, GAO S L, HU L L, et al. Constitutive relation of energy dissipation damage of heterogeneous coal samples under different loading rates [J]. Journal of China Coal Society, 2022, 47(Suppl 1): 90–102. doi: 10.13225/j.cnki.jccs.2022.0163
    [33] 李庆文, 禹萌萌, 高森林, 等. 加载速率对碳纤维布被动约束煤能量演化的影响 [J]. 煤炭学报, 2024, 49(Suppl 1): 236–247. doi: 10.13225/j.cnki.jccs.2023.0238

    LI Q W, YU M M, GAO S L, et al. Effect of loading rate on energy evolution of coal confined passively by CFRP sheets [J]. Journal of China Coal Society, 2024, 49(Suppl 1): 236–247. doi: 10.13225/j.cnki.jccs.2023.0238
    [34] 岳少飞, 王开, 张小强, 等. 不同加载速率无烟煤蠕变特性及能量演化规律 [J]. 煤炭学报, 2023, 48(8): 3060–3075. doi: 10.13225/j.cnki.jccs.2023.0120

    YUE S F, WANG K, ZHANG X Q, et al. Creep properties and energy evolution of anthracite coal with different loading rates [J]. Journal of China Coal Society, 2023, 48(8): 3060–3075. doi: 10.13225/j.cnki.jccs.2023.0120
    [35] 杨磊, 王晓卿, 李建忠. 不同冲击倾向性煤单轴压缩下能量演化与损伤特征 [J]. 煤炭科学技术, 2021, 49(6): 111–118. doi: 10.13199/j.cnki.cst.2021.06.013

    YANG L, WANG X Q, LI J Z. Energy evolution and damage characteristics of coal with different bursting liability under uniaxial compression [J]. Coal Science and Technology, 2021, 49(6): 111–118. doi: 10.13199/j.cnki.cst.2021.06.013
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  4
  • PDF下载量:  3
出版历程
  • 收稿日期:  2024-07-23
  • 修回日期:  2024-08-06
  • 网络出版日期:  2025-01-13

目录

    /

    返回文章
    返回