金刚石压腔加载下硅油中的压力分布

徐天成 邓袁昊 洪晨 黄海军 徐丰

徐天成, 邓袁昊, 洪晨, 黄海军, 徐丰. 金刚石压腔加载下硅油中的压力分布[J]. 高压物理学报. doi: 10.11858/gywlxb.20240860
引用本文: 徐天成, 邓袁昊, 洪晨, 黄海军, 徐丰. 金刚石压腔加载下硅油中的压力分布[J]. 高压物理学报. doi: 10.11858/gywlxb.20240860
XU Tiancheng, DENG Yuanhao, HONG Chen, HUANG Haijun, XU Feng. Pressure Distribution Investigation in Silicon Oil Compressed in Diamond Anvil Cell[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240860
Citation: XU Tiancheng, DENG Yuanhao, HONG Chen, HUANG Haijun, XU Feng. Pressure Distribution Investigation in Silicon Oil Compressed in Diamond Anvil Cell[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240860

金刚石压腔加载下硅油中的压力分布

doi: 10.11858/gywlxb.20240860
基金项目: 国家自然科学基金(41504070,42274124)
详细信息
    作者简介:

    徐天成(2003-),男,本科,主要从事高压实验技术研究. E-mail:794356848@qq.com

    通讯作者:

    徐 丰(1984-),男,博士,副教授,主要从事高压物理研究. E-mail:xufeng@whut.edu.cn

  • 中图分类号: O521.2; O521.3

Pressure Distribution Investigation in Silicon Oil Compressed in Diamond Anvil Cell

  • 摘要: 金刚石压腔是被广泛使用的静高压装置之一,具有压力范围宽,光学适用性优良以及使用便利等优点,对高压科学的发展起到了巨大的推动作用。然而,压力较高时,传压介质固化等因素可能造成压腔内静水压环境失衡,从而产生压力梯度。采用皮秒超声技术测量压腔内各处的声学信号,通过声学数据分析获得了高压下样品腔内硅油的压力分布,结果显示:压力梯度随压强的升高而增大,从1 GPa时的1.3×10−4 GPa/μm增长为30 GPa时的5.3×10−2 GPa/μm。该方法不仅克服了以往实验技术在信号测量连续性、样品选择等方面的限制,还可在普通实验室搭建和使用。此外,还结合原位拉曼光谱技术,分析了加压过程中硅油中压力标准差的异常波动,该波动可能与硅油在经历了玻璃化转变之后发生固-固相变有关。

     

  • 图  (a) 皮秒超声实验装置(PBS为偏振分束器,λ/4为1/4波片,λ/2为1/2波片,AOM为声光调制器,DBP为二向色分束器,PD为光电探测器);(b) 放大的金刚石压腔(Transducer为光声换能介质(钨箔),样品腔的剩余空间由硅油填充,图中还注明了泵浦光和探测光的光路及声波的传播路径)

    Figure  1.  (a) Schematic of the picosecond ultrasonics experiment setup (PBS represents polarization beam splitter, λ/4 represents quarter waveplate, λ/2 represents half wave plate, AOM is acousto-optic modulator, DBP is dichroic beam splitter, and PD is photodetector); (b) enlarged diagram of the diamond anvil cell (transducer stands for the opto-acoustic transducer (tungsten foil), optical paths of pump and probe beams, as well as propagation of sound waves are shown as well in the figure)

    图  (a) 显微镜下DAC(最外圈的亮色圆环(直径为300 μm)对应金刚石台面,中间的浅色圆片为钨箔,图中标出了测量点1、2和3以及红宝石的位置);(b) 4.1 GPa时点1处采集的超声原始信号;(c) 去除热背底后的布里渊振荡信号;(d) 将(c)进行快速傅里叶变化后得到的频域信号

    Figure  2.  (a) Image inside the DAC observed under microscope (The outermost bright-colored circular region stands for the culet area with diameter of 300 μm. The middle-most light-colored circular plate are the tungsten foil, measuring positions 1, 2, and 3, aswell as the location of ruby are labeled.); (b) raw signal of picosecond ultrasonics collected at pressure of 4.1 GPa at Position 1;(c) Brillouin oscillations after subtraction of the thermal background; (d) frequency spectrum after Fourier transformation of (c)

    图  (a) 高压下点1、2和3处的压力分布及其误差;(b) 各点与点3之间的压力差(点3设为参照,其压强均设置为零)

    Figure  3.  (a) Pressure distribution at measuring positions 1, 2 and 3; (b) corresponding pressure gradient(the pressure gradient at point 3 is set to zero)

    图  高压下各测量点位间压力的标准差

    Figure  4.  Standard deviation of the pressures measured at different measuring positions at different pressures

    图  高压下硅油的拉曼光谱

    Figure  5.  Raman spectra of silicon oil at different pressures

    表  1  高压下3个测量点处采集的布里渊振荡频率和由红宝石标定的压强

    Table  1.   Brillouin oscillation frequencies collected at the three measuring positions and pressures calibrated by ruby at different pressure steps

    No. Frequency/GHz Pressure on ruby/GPa
    Position 1 Position 2 Position 3
    1 13.07(6) 13.04(6) 13.04(6) 1.0
    2 21.56(12) 21.51(12) 21.43(12) 4.1
    3 25.52(14) 25.42(14) 25.36(14) 7.0
    4 29.38(18) 29.18(18) 28.99(18) 10.2
    5 33.17(17) 33.09(17) 33.01(17) 13.8
    6 38.10(20) 37.74(20) 37.50(20) 20.2
    7 41.98(22) 41.67(22) 41.30(22) 25.0
    8 45.79(24) 45.58(24) 45.05(24) 30.0
    下载: 导出CSV
  • [1] BASSETT W A. Diamond anvil cell, 50th birthday [J]. High Pressure Research, 2009, 29(2): 163–186. doi: 10.1080/08957950802597239
    [2] JAYARAMAN A. Diamond anvil cell and high-pressure physical investigations [J]. Reviews of Modern Physics, 1983, 55(1): 65–108. doi: 10.1103/RevModPhys.55.65
    [3] DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 3: 1163. doi: 10.1038/ncomms2160
    [4] STIXRUDE L, COHEN R E. High-pressure elasticity of iron and anisotropy of earth's inner core [J]. Science, 1995, 267(5206): 1972–1975. doi: 10.1126/science.267.5206.1972
    [5] TAKEMURA K. Hydrostatic experiments up to ultrahigh pressures [J]. Journal of the Physical Society of Japan, 2007, 76: 202–205. doi: 10.1143/JPSJS.76SA.202
    [6] LI B, JI C, YANG W G, et al. Diamond anvil cell behavior up to 4 Mbar [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): 1713–1717.
    [7] PIERMARINI G J, BLOCK S, BARNETT J D. Hydrostatic limits in liquids and solids to 100 kbar [J]. Journal of Applied Physics, 1973, 44(12): 5377–5382. doi: 10.1063/1.1662159
    [8] EREMETS M I. High pressure experimental methods [M]. Oxford: Oxford University, 1996.
    [9] HEMLEY R J, MAO H K, SHEN G Y, et al. X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures [J]. Science, 1997, 276(5316): 1242–1245. doi: 10.1126/science.276.5316.1242
    [10] FORMAN R A, PIERMARINI G J, BARNETT J D, et al. Pressure measurement made by the utilization of ruby sharp-line luminescence [J]. Science, 1972, 176(4032): 284–285. doi: 10.1126/science.176.4032.284
    [11] SUNG C M, GOETZE C, MAO H K. Pressure distribution in the diamond anvil press and the shear strenght of fayalite [J]. Review of Scientific Instruments, 1977, 48(11): 1386–1391. doi: 10.1063/1.1134902
    [12] TAKEMURA K, DEWAELE A. Isothermal equation of state for gold with a He-pressure medium [J]. Physical Review B, 2008, 78(10): 104119. doi: 10.1103/PhysRevB.78.104119
    [13] GOÑI A R, ZHOU T, SCHWARZ U, et al. Pressure-temperature phase diagram of the spin-peierls compound CuGeO3 [J]. Physical Review Letters, 1996, 77(6): 1079–1082. doi: 10.1103/PhysRevLett.77.1079
    [14] KLOTZ S, CHERVIN J C, MUNSCH P, et al. Hydrostatic limits of 11 pressure transmitting media [J]. Journal of Physics D: Applied Physics, 2009, 42(7): 075413. doi: 10.1088/0022-3727/42/7/075413
    [15] THOMSEN C, GRAHN H T, MARIS H J, et al. Surface generation and detection of phonons by picosecond light pulses [J]. Physical Review B, 1986, 34(6): 4129–4138. doi: 10.1103/PhysRevB.34.4129
    [16] DECREMPS F, BELLIARD L, PERRIN B, et al. Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in a diamond anvil cell: application to the stability study of AlPdMn [J]. Physical Review Letters, 2008, 100(3): 035502. doi: 10.1103/PhysRevLett.100.035502
    [17] DECREMPS F, BELLIARD L, GAUTHIER M, et al. Equation of state, stability, anisotropy and nonlinear elasticity of diamond-cubic (ZB) silicon by phonon imaging at high pressure [J]. Physical Review B, 2010, 82(10): 104119. doi: 10.1103/PhysRevB.82.104119
    [18] ZHAO B, XU F, BELLIARD L, et al. Sound velocities and elastic moduli of phases I and V of silicon at high pressures [J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2019, 13(8): 1900173. doi: 10.1002/pssr.201900173
    [19] RAETZ S, KURIAKOSE M, DJEMIA P, et al. Elastic anisotropy and single-crystal moduli of solid argon up to 64 GPa from time-domain Brillouin scattering [J]. Physical Review B, 2019, 99(22): 224102. doi: 10.1103/PhysRevB.99.224102
    [20] SANDEEP S, THRÉARD T, DE LIMA SAVI E, et al. 3D characterization of individual grains of coexisting high-pressure H2O ice phases by time-domain Brillouin scattering [J]. Journal of Applied Physics, 2021, 130(5): 053104. doi: 10.1063/5.0056814
    [21] GUSEV V E, RUELLO P. Advances in applications of time-domain Brillouin scattering for nanoscale imaging [J]. Applied Physics Reviews, 2018, 5(3): 031101. doi: 10.1063/1.5017241
    [22] XU F, DJEMIA P, BELLIARD L, et al. Influence of elastic anisotropy on measured sound velocities and elastic moduli of polycrystalline cubic solids [J]. Journal of Applied Physics, 2021, 130(3): 035903. doi: 10.1063/5.0053372
    [23] RAGAN D D, CLARKE D R, SCHIFERL D. Silicone fluid as a high-pressure medium in diamond anvil cells [J]. Review of Scientific Instruments, 1996, 67(2): 494–496. doi: 10.1063/1.1146627
    [24] SHEN Y R, KUMAR R S, PRAVICA M, et al. Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells [J]. Review of Scientific Instruments, 2004, 75(11): 4450–4454. doi: 10.1063/1.1786355
    [25] HSIEH W P. Thermal conductivity of methanol-ethanol mixture and silicone oil at high pressures [J]. Journal of Applied Physics, 2015, 117(23): 235901. doi: 10.1063/1.4922632
    [26] MURATA K, YOKOGAWA K, YOSHINO H, et al. Pressure transmitting medium Daphne 7474 solidifying at 3.7 GPa at room temperature [J]. Review of Scientific Instruments, 2008, 79(8): 085101. doi: 10.1063/1.2964117
    [27] CHEN X H, LOU H B, ZENG Z D, et al. Structural transitions of 4∶1 methanol-ethanol mixture and silicone oil under high pressure [J]. Matter and Radiation at Extremes, 2021, 6(3): 038402. doi: 10.1063/5.0044893
    [28] ZHANG X Z, LI C H, XU F, et al. Sound velocity anisotropy and single-crystal elastic moduli of MgO to 43 GPa [J]. Journal of Geophysical Research: Solid Earth, 2023, 128(6): e2022JB026311. doi: 10.1029/2022JB026311
    [29] DECREMPS F, GAUTHIER M, AYRINHAC S, et al. Picosecond acoustics method for measuring the thermodynamical properties of solids and liquids at high pressure and high temperature [J]. Ultrasonics, 2015, 56: 129–140. doi: 10.1016/j.ultras.2014.04.011
    [30] KURIAKOSE M, RAETZ S, CHIGAREV N, et al. Picosecond laser ultrasonics for imaging of transparent polycrystalline materials compressed to megabar pressures [J]. Ultrasonics, 2016, 69: 259–267. doi: 10.1016/j.ultras.2016.03.007
    [31] 王晓霞, 李志慧, 陈晨, 等. 硅油的高压拉曼散射 [J]. 高等学校化学学报, 2014, 35(11): 2410–2415.

    WANG X X, LI Z H, CHEN C, et al. High pressure raman spectra of silicone oil [J]. Chemical Journal of Chinese Universities, 2014, 35(11): 2410–2415.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  7
  • PDF下载量:  1
出版历程
  • 收稿日期:  2024-07-23
  • 修回日期:  2024-08-16
  • 录用日期:  2024-08-22
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回