Pressure Distribution Investigation in Silicon Oil Compressed in Diamond Anvil Cell
-
摘要: 金刚石压腔是被广泛使用的静高压装置之一,具有压力范围宽,光学适用性优良以及使用便利等优点,对高压科学的发展起到了巨大的推动作用。然而,压力较高时,传压介质固化等因素可能造成压腔内静水压环境失衡,从而产生压力梯度。采用皮秒超声技术测量压腔内各处的声学信号,通过声学数据分析获得了高压下样品腔内硅油的压力分布,结果显示:压力梯度随压强的升高而增大,从1 GPa时的1.3×10−4 GPa/μm增长为30 GPa时的5.3×10−2 GPa/μm。该方法不仅克服了以往实验技术在信号测量连续性、样品选择等方面的限制,还可在普通实验室搭建和使用。此外,还结合原位拉曼光谱技术,分析了加压过程中硅油中压力标准差的异常波动,该波动可能与硅油在经历了玻璃化转变之后发生固-固相变有关。Abstract: Diamond anvil cell (DAC) is a kind of widely used static-high-pressure device. Benefitting from its wide pressure range, excellent optical applicability and convenience of use, DAC provides a tremendous boost to the development of high-pressure science. However, at high pressures, factors like solidification of pressure transmitting medium may cause destruction of the hydrostatic pressure condition in the DAC sample chamber, leading to the generation of pressure gradients. In this work, a new method of using the technique of picosecond ultrasonics to investigate acoustic signal distribution at various locations within the sample chamber was proposed, which can analyze the pressure distribution via the acoustic observations. Limitations in the continuity of signal acquisition, sample selection, etc. can be overcome in this experimental technique, which could be built and manipulated in an ordinary laboratory. Here, pressure gradient in silicon oil was carried out under compression using this technique, and the results revealed that the pressure gradient in the sample chamber increased from 1.3×10−4 GPa/μm at 1 GPa to 5.3×10−2 GPa/μm at 30 GPa. In addition, the anomalous change of standard deviation of the pressure distribution was analyzed by combining it with in-situ Raman spectroscopy, then the possible phase transitions of silicone oil at high pressures were discussed.
-
Key words:
- diamond anvil cell /
- pressure gradient /
- picosecond ultrasonics /
- silicone oil /
- phase transition
-
图 1 (a) 皮秒超声实验装置(PBS为偏振分束器,λ/4为1/4波片,λ/2为1/2波片,AOM为声光调制器,DBP为二向色分束器,PD为光电探测器);(b) 放大的金刚石压腔(Transducer为光声换能介质(钨箔),样品腔的剩余空间由硅油填充,图中还注明了泵浦光和探测光的光路及声波的传播路径)
Figure 1. (a) Schematic of the picosecond ultrasonics experiment setup (PBS represents polarization beam splitter, λ/4 represents quarter waveplate, λ/2 represents half wave plate, AOM is acousto-optic modulator, DBP is dichroic beam splitter, and PD is photodetector); (b) enlarged diagram of the diamond anvil cell (transducer stands for the opto-acoustic transducer (tungsten foil), optical paths of pump and probe beams, as well as propagation of sound waves are shown as well in the figure)
图 2 (a) 显微镜下DAC(最外圈的亮色圆环(直径为300 μm)对应金刚石台面,中间的浅色圆片为钨箔,图中标出了测量点1、2和3以及红宝石的位置);(b) 4.1 GPa时点1处采集的超声原始信号;(c) 去除热背底后的布里渊振荡信号;(d) 将(c)进行快速傅里叶变化后得到的频域信号
Figure 2. (a) Image inside the DAC observed under microscope (The outermost bright-colored circular region stands for the culet area with diameter of 300 μm. The middle-most light-colored circular plate are the tungsten foil, measuring positions 1, 2, and 3, aswell as the location of ruby are labeled.); (b) raw signal of picosecond ultrasonics collected at pressure of 4.1 GPa at Position 1;(c) Brillouin oscillations after subtraction of the thermal background; (d) frequency spectrum after Fourier transformation of (c)
表 1 高压下3个测量点处采集的布里渊振荡频率和由红宝石标定的压强
Table 1. Brillouin oscillation frequencies collected at the three measuring positions and pressures calibrated by ruby at different pressure steps
No. Frequency/GHz Pressure on ruby/GPa Position 1 Position 2 Position 3 1 13.07(6) 13.04(6) 13.04(6) 1.0 2 21.56(12) 21.51(12) 21.43(12) 4.1 3 25.52(14) 25.42(14) 25.36(14) 7.0 4 29.38(18) 29.18(18) 28.99(18) 10.2 5 33.17(17) 33.09(17) 33.01(17) 13.8 6 38.10(20) 37.74(20) 37.50(20) 20.2 7 41.98(22) 41.67(22) 41.30(22) 25.0 8 45.79(24) 45.58(24) 45.05(24) 30.0 -
[1] BASSETT W A. Diamond anvil cell, 50th birthday [J]. High Pressure Research, 2009, 29(2): 163–186. doi: 10.1080/08957950802597239 [2] JAYARAMAN A. Diamond anvil cell and high-pressure physical investigations [J]. Reviews of Modern Physics, 1983, 55(1): 65–108. doi: 10.1103/RevModPhys.55.65 [3] DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 3: 1163. doi: 10.1038/ncomms2160 [4] STIXRUDE L, COHEN R E. High-pressure elasticity of iron and anisotropy of earth's inner core [J]. Science, 1995, 267(5206): 1972–1975. doi: 10.1126/science.267.5206.1972 [5] TAKEMURA K. Hydrostatic experiments up to ultrahigh pressures [J]. Journal of the Physical Society of Japan, 2007, 76: 202–205. doi: 10.1143/JPSJS.76SA.202 [6] LI B, JI C, YANG W G, et al. Diamond anvil cell behavior up to 4 Mbar [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): 1713–1717. [7] PIERMARINI G J, BLOCK S, BARNETT J D. Hydrostatic limits in liquids and solids to 100 kbar [J]. Journal of Applied Physics, 1973, 44(12): 5377–5382. doi: 10.1063/1.1662159 [8] EREMETS M I. High pressure experimental methods [M]. Oxford: Oxford University, 1996. [9] HEMLEY R J, MAO H K, SHEN G Y, et al. X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures [J]. Science, 1997, 276(5316): 1242–1245. doi: 10.1126/science.276.5316.1242 [10] FORMAN R A, PIERMARINI G J, BARNETT J D, et al. Pressure measurement made by the utilization of ruby sharp-line luminescence [J]. Science, 1972, 176(4032): 284–285. doi: 10.1126/science.176.4032.284 [11] SUNG C M, GOETZE C, MAO H K. Pressure distribution in the diamond anvil press and the shear strenght of fayalite [J]. Review of Scientific Instruments, 1977, 48(11): 1386–1391. doi: 10.1063/1.1134902 [12] TAKEMURA K, DEWAELE A. Isothermal equation of state for gold with a He-pressure medium [J]. Physical Review B, 2008, 78(10): 104119. doi: 10.1103/PhysRevB.78.104119 [13] GOÑI A R, ZHOU T, SCHWARZ U, et al. Pressure-temperature phase diagram of the spin-peierls compound CuGeO3 [J]. Physical Review Letters, 1996, 77(6): 1079–1082. doi: 10.1103/PhysRevLett.77.1079 [14] KLOTZ S, CHERVIN J C, MUNSCH P, et al. Hydrostatic limits of 11 pressure transmitting media [J]. Journal of Physics D: Applied Physics, 2009, 42(7): 075413. doi: 10.1088/0022-3727/42/7/075413 [15] THOMSEN C, GRAHN H T, MARIS H J, et al. Surface generation and detection of phonons by picosecond light pulses [J]. Physical Review B, 1986, 34(6): 4129–4138. doi: 10.1103/PhysRevB.34.4129 [16] DECREMPS F, BELLIARD L, PERRIN B, et al. Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in a diamond anvil cell: application to the stability study of AlPdMn [J]. Physical Review Letters, 2008, 100(3): 035502. doi: 10.1103/PhysRevLett.100.035502 [17] DECREMPS F, BELLIARD L, GAUTHIER M, et al. Equation of state, stability, anisotropy and nonlinear elasticity of diamond-cubic (ZB) silicon by phonon imaging at high pressure [J]. Physical Review B, 2010, 82(10): 104119. doi: 10.1103/PhysRevB.82.104119 [18] ZHAO B, XU F, BELLIARD L, et al. Sound velocities and elastic moduli of phases I and V of silicon at high pressures [J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2019, 13(8): 1900173. doi: 10.1002/pssr.201900173 [19] RAETZ S, KURIAKOSE M, DJEMIA P, et al. Elastic anisotropy and single-crystal moduli of solid argon up to 64 GPa from time-domain Brillouin scattering [J]. Physical Review B, 2019, 99(22): 224102. doi: 10.1103/PhysRevB.99.224102 [20] SANDEEP S, THRÉARD T, DE LIMA SAVI E, et al. 3D characterization of individual grains of coexisting high-pressure H2O ice phases by time-domain Brillouin scattering [J]. Journal of Applied Physics, 2021, 130(5): 053104. doi: 10.1063/5.0056814 [21] GUSEV V E, RUELLO P. Advances in applications of time-domain Brillouin scattering for nanoscale imaging [J]. Applied Physics Reviews, 2018, 5(3): 031101. doi: 10.1063/1.5017241 [22] XU F, DJEMIA P, BELLIARD L, et al. Influence of elastic anisotropy on measured sound velocities and elastic moduli of polycrystalline cubic solids [J]. Journal of Applied Physics, 2021, 130(3): 035903. doi: 10.1063/5.0053372 [23] RAGAN D D, CLARKE D R, SCHIFERL D. Silicone fluid as a high-pressure medium in diamond anvil cells [J]. Review of Scientific Instruments, 1996, 67(2): 494–496. doi: 10.1063/1.1146627 [24] SHEN Y R, KUMAR R S, PRAVICA M, et al. Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells [J]. Review of Scientific Instruments, 2004, 75(11): 4450–4454. doi: 10.1063/1.1786355 [25] HSIEH W P. Thermal conductivity of methanol-ethanol mixture and silicone oil at high pressures [J]. Journal of Applied Physics, 2015, 117(23): 235901. doi: 10.1063/1.4922632 [26] MURATA K, YOKOGAWA K, YOSHINO H, et al. Pressure transmitting medium Daphne 7474 solidifying at 3.7 GPa at room temperature [J]. Review of Scientific Instruments, 2008, 79(8): 085101. doi: 10.1063/1.2964117 [27] CHEN X H, LOU H B, ZENG Z D, et al. Structural transitions of 4∶1 methanol-ethanol mixture and silicone oil under high pressure [J]. Matter and Radiation at Extremes, 2021, 6(3): 038402. doi: 10.1063/5.0044893 [28] ZHANG X Z, LI C H, XU F, et al. Sound velocity anisotropy and single-crystal elastic moduli of MgO to 43 GPa [J]. Journal of Geophysical Research: Solid Earth, 2023, 128(6): e2022JB026311. doi: 10.1029/2022JB026311 [29] DECREMPS F, GAUTHIER M, AYRINHAC S, et al. Picosecond acoustics method for measuring the thermodynamical properties of solids and liquids at high pressure and high temperature [J]. Ultrasonics, 2015, 56: 129–140. doi: 10.1016/j.ultras.2014.04.011 [30] KURIAKOSE M, RAETZ S, CHIGAREV N, et al. Picosecond laser ultrasonics for imaging of transparent polycrystalline materials compressed to megabar pressures [J]. Ultrasonics, 2016, 69: 259–267. doi: 10.1016/j.ultras.2016.03.007 [31] 王晓霞, 李志慧, 陈晨, 等. 硅油的高压拉曼散射 [J]. 高等学校化学学报, 2014, 35(11): 2410–2415.WANG X X, LI Z H, CHEN C, et al. High pressure raman spectra of silicone oil [J]. Chemical Journal of Chinese Universities, 2014, 35(11): 2410–2415.