缠绕离散式大腔体超高压模具的设计计算及数值模拟

赵亮 李明哲 吴楠楠 王金龙 梁晓波 谷洲之 李怀勇

赵亮, 李明哲, 吴楠楠, 王金龙, 梁晓波, 谷洲之, 李怀勇. 缠绕离散式大腔体超高压模具的设计计算及数值模拟[J]. 高压物理学报. doi: 10.11858/gywlxb.20240851
引用本文: 赵亮, 李明哲, 吴楠楠, 王金龙, 梁晓波, 谷洲之, 李怀勇. 缠绕离散式大腔体超高压模具的设计计算及数值模拟[J]. 高压物理学报. doi: 10.11858/gywlxb.20240851
ZHAO Liang, LI Mingzhe, WU Nannan, WANG Jinlong, LIANG Xiaobo, GU Zhouzhi, LI Huaiyong. Calculation and Numerical Simulation of Winding Discreted Large Cavity of Ultra-High Pressure Die[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240851
Citation: ZHAO Liang, LI Mingzhe, WU Nannan, WANG Jinlong, LIANG Xiaobo, GU Zhouzhi, LI Huaiyong. Calculation and Numerical Simulation of Winding Discreted Large Cavity of Ultra-High Pressure Die[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240851

缠绕离散式大腔体超高压模具的设计计算及数值模拟

doi: 10.11858/gywlxb.20240851
基金项目: 江苏省高等学校自然科学基金(23KJB460003,23KJB460004);淮安市基础研究计划(HABL2023009,HAB202227)
详细信息
    作者简介:

    赵 亮(1989-),男,博士,讲师,主要从事超高压技术与设备研究. E-mail:minghaibu09@163.com

    通讯作者:

    吴楠楠(1994-),女,硕士,工程师,主要从事材料加工技术研究. E-mail:18989358963@163.com

  • 中图分类号: O521.3; O342

Calculation and Numerical Simulation of Winding Discreted Large Cavity of Ultra-High Pressure Die

  • 摘要: 为了提高年轮式超高压模具腔体的极限承压能力、增大腔体容积,提出了一种缠绕离散式大腔体超高压模具结构,该模具主要由离散式压缸、支撑环和钢丝缠绕层组成。离散式结构消除了整体式压缸的周向应力,模具无需使用大尺寸硬质合金和支撑环,可有效提高模具的极限承压能力,降低模具制造难度,易于实现模具腔体大型化。对模具关键参数进行计算,得到确定模具结构最佳尺寸的方法。数值模拟结果表明:在相同的工作内压加载下,离散式压缸的应力值更低,压缸内壁的应力环境得到有效改善。对缠绕离散式大腔体超高压模具的极限承压能力进行预测,发现随着离散块数量的增加,模具的承压能力逐渐增强,但是增长速度越来越缓慢。因此,不能通过无限增加离散块数量来增加模具的极限承压能力。分析表明,缠绕离散式大腔体超高压模具的承压能力更高,降低了模具的运行成本。研究结果可为大腔体、高承压能力的超高压装置设计提供新思路、新方法。

     

  • 图  缠绕离散式大腔体超高压模具受力分析

    Figure  1.  Stress analysis of ultra-high pressure die for wound discrete large cavities

    图  缠绕式模具尺寸

    Figure  2.  Dimensions of wrapping die

    图  离散式压缸的等效应力和最大剪切应力分布

    Figure  3.  Distribution of equivalent stress and maximum shear stress in discrete pressure cylinder

    图  压缸应力分析

    Figure  4.  Stress analysis of pressure cylinder

    图  支撑环应力云图

    Figure  5.  Distribution diagram of supporting ring stress

    图  模具极限承压能力预测

    Figure  6.  Prediction of ultimate pressure bearing capacity of die

    表  1  模具材料参数[1415]

    Table  1.   Material parameters of die[1415]

    MaterialDensity/(g·cm−3)Elastic modulus/GPaPoisson’s ratioMaximum shear strength/MPaFailure strength/MPa
    YG815.636000.223 2506 200
    45CrNiMoVA7.852100.277721 204
    65Mn7.851970.277091 181
    下载: 导出CSV
  • [1] ITO E, KATSURA T, YAMAZAKI D, et al. A new 6-axis apparatus to squeeze the Kawai-cell of sintered diamond cubes [J]. Physics of the Earth and Planetary Interiors, 2009, 174(1): 264–269.
    [2] YANG Y F, LI M Z, WANG B L. Study on stress distribution of tangent split high pressure apparatus and its pressure bearing capacity [J]. Diamond and Related Materials, 2015, 58: 180–184. doi: 10.1016/j.diamond.2015.07.010
    [3] 王伯龙, 李明哲, 刘志卫, 等. 新型切向分块式两面顶超高压模具 [J]. 高压物理学报, 2019, 33(1): 013102. doi: 10.11858/gywlxb.20180595

    WANG B L, LI M Z, LIU Z W, et al. A novel tangential split-belt ultrahigh pressure apparatus [J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 013102. doi: 10.11858/gywlxb.20180595
    [4] YANG Y F, LI M Z, LIU Z W, et al. Numerical simulation and experiment on split tungsten carbide cylinder of high pressure apparatus [J]. Review of Scientific Instruments, 2015, 86(12): 125113. doi: 10.1063/1.4939033
    [5] 李胜华, 李金良. 球弧式纵向剖分超高压模具 [J]. 高压物理学报, 2020, 34(6): 063302. doi: 10.11858/gywlxb.20200538

    LI S H, LI J L. Spherical arc longitudinal split ultra-high pressure mold [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 063302. doi: 10.11858/gywlxb.20200538
    [6] 刘志卫, 吴承伟, 童明俊, 等. 钢丝缠绕剖分式超高压模具等张力预紧分析 [J]. 高压物理学报, 2021, 35(1): 013302. doi: 10.11858/gywlxb.20200591

    LIU Z W, WU C W, TONG M J, et al. Analysis of equal tension pre-tightening of steel wire winding split ultra-high pressure die [J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 013302. doi: 10.11858/gywlxb.20200591
    [7] KHVOSTANTSEV L G, SLESAREV V N. Large-volume high-pressure devices for physical investigations [J]. Physics-Uspekhi, 2008, 51(10): 1099–1104.
    [8] LIU Z W, LI M Z, YANG Y F, et al. Study on pressure capacity of multilayer stagger-split die, using simulation-based optimization [J]. High Pressure Research, 2013, 33(4): 787–794. doi: 10.1080/08957959.2013.825793
    [9] 朱瑞林. 圆筒形压力容器自增强若干问题研究 [J]. 机械工程学报, 2010, 46(6): 126–133. doi: 10.3901/JME.2010.06.126

    ZHU R L. Study on autofrettage of cylindrical pressure vessels [J]. Journal of Mechanical Engineering, 2010, 46(6): 126–133. doi: 10.3901/JME.2010.06.126
    [10] ZHAO L, LI M Z, LI R, et al. Stress analysis of the multi-layer stagger-split die for synthesizing gem quality large single crystal diamond [J]. Diamond and Related Materials, 2018, 83(3): 57–59.
    [11] YI Z, FU W Z. Numerical study on stress distribution of double-layered split ultrahigh pressure die [J]. Journal of Nanoelectronics and Optoelectronics, 2018, 13(8): 1134–1140. doi: 10.1166/jno.2018.2381
    [12] 王伯龙, 李明哲, 刘志卫, 等. 新型多层交错剖分超高压模具的数值模拟及其试验验证 [J]. 高压物理学报, 2018, 32(6): 27–32. doi: 10.11858/gywlxb.20180560

    WANG B L, LI M Z, LIU Z W, et al. Numerical simulation and experiment on new multilayer stagger-split die of ultra-high pressure apparatus [J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 27–32. doi: 10.11858/gywlxb.20180560
    [13] 姚裕成. 人造金刚石和超高压高温技术 [M]. 北京: 化学工业出版社, 1996: 35−36.

    YAO Y C. Artificial diamond and ultra-high pressure and high temperature technology [M]. Beijing: Chemical Industry Press, 1996: 35−36.
    [14] 杨云飞, 李明哲, 刘志卫, 等. 缠绕式挤压筒结构及缠绕层预应力分析 [J]. 机械工程学报, 2015, 51(12): 89–94. doi: 10.3901/JME.2015.12.089

    YANG Y F, LI M Z, LIU Z W, et al. Structure of wire winded extrusion container and the analysis of the pre-stressed winding layer [J]. Journal of Mechanical Engineering, 2015, 51(12): 89–94. doi: 10.3901/JME.2015.12.089
    [15] GETTING I C, CHEN G, BROWN J A. The strength and rheology of commercial tungsten carbide cermets used in high-pressure apparatus [J]. Pure and Applied Geophysics, 1993, 141(2): 545–577.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  11
  • PDF下载量:  0
出版历程
  • 收稿日期:  2024-07-12
  • 修回日期:  2024-08-13
  • 录用日期:  2024-10-15
  • 网络出版日期:  2024-12-10

目录

    /

    返回文章
    返回