甲酸铵含量对现场混装乳胶基质流变及热分解性能的影响

何志伟 岳嘉伟 黄振祎 胡前浩 周圣涛

何志伟, 岳嘉伟, 黄振祎, 胡前浩, 周圣涛. 甲酸铵含量对现场混装乳胶基质流变及热分解性能的影响[J]. 高压物理学报. doi: 10.11858/gywlxb.20240845
引用本文: 何志伟, 岳嘉伟, 黄振祎, 胡前浩, 周圣涛. 甲酸铵含量对现场混装乳胶基质流变及热分解性能的影响[J]. 高压物理学报. doi: 10.11858/gywlxb.20240845
HE Zhiwei, YUE Jiawei, HUANG Zhenyi, HU Qianhao, ZHOU Shengtao. Influence of Ammonium Formate Content on Rheological and Thermal Decomposition Properties of On-Site Mixed Emulsion Matrix[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240845
Citation: HE Zhiwei, YUE Jiawei, HUANG Zhenyi, HU Qianhao, ZHOU Shengtao. Influence of Ammonium Formate Content on Rheological and Thermal Decomposition Properties of On-Site Mixed Emulsion Matrix[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240845

甲酸铵含量对现场混装乳胶基质流变及热分解性能的影响

doi: 10.11858/gywlxb.20240845
基金项目: 国家自然科学基金(51404006)
详细信息
    作者简介:

    何志伟(1979-),男,博士,副教授,主要从事含能材料配方研究. E-mail:751601138@qq.com

  • 中图分类号: TJ55; O521.2; TQ560.1

Influence of Ammonium Formate Content on Rheological and Thermal Decomposition Properties of On-Site Mixed Emulsion Matrix

  • 摘要: 为提高现场混装乳化炸药的耐高温性能,制备了4种不同甲酸铵含量的现场混装乳化炸药基质样品。采用旋转流变仪和同步热分析仪研究了4种样品的流动性、黏弹性、黏温及其热分解性能。结果表明:加入甲酸铵可以提高现场混装乳胶基质的黏度,且随着甲酸铵质量分数的增加,样品的黏度出现先增大后减小的趋势;与未添加甲酸铵的样品相比,加入甲酸铵的样品的弹性模量增大,稳定性增强;当甲酸铵的质量分数不大于9%时,在50 ℃左右的温度下,乳胶基质的黏度均能够满足泵送要求;甲酸铵的加入对乳胶基质的热分解过程没有明显影响;随着甲酸铵质量分数的增加,其外推起始分解温度、活化能、热爆炸临界温度和自加速分解温度均有所增加,现场混装乳胶基质的热稳定性和热安全性得到提升。

     

  • 图  4种样品的流动性曲线

    Figure  1.  Flow curves for the four kinds of samples

    图  4种样品的黏弹性曲线

    Figure  2.  Viscoelastic curves for the four kinds of samples

    图  4种样品的黏度-温度曲线

    Figure  3.  Viscosity-temperature curves for the four kinds of samples

    图  4种样品的TG曲线

    Figure  4.  TG curves for the four kinds of samples

    图  4种样品的DTG曲线

    Figure  5.  DTG curves for the four kinds of samples

    表  1  乳胶基质配方

    Table  1.   Formulation of emulsion matrix

    SamplesMass fraction/%
    ANSNWaterAmmonium formateEngine oilDieselSpan-80
    17251602.52.52
    26951632.52.52
    36651662.52.52
    46351692.52.52
    下载: 导出CSV

    表  2  乳胶基质的$G'_{\mathrm{m}} $、$\gamma_{\mathrm{cr}} $与内聚力

    Table  2.   Emulsion matrix $G'_{\mathrm{m}} $,$\gamma_{\mathrm{cr}} $ and cohesion

    Samples $G'_{\mathrm{m}} $/Pa $\gamma_{\mathrm{cr}} $/% Cohesion/Pa
    1 815 4.59 37.41
    2 861 4.36 37.53
    3 984 4.26 41.92
    4 1 010 3.94 39.79
    下载: 导出CSV

    表  3  4种样品的热分解特征温度

    Table  3.   Thermal decomposition characteristic temperatures of the four kinds of samples

    SamplesTonset/℃Tp/℃Te/
    1238.36264.83278.35
    2245.41266.24285.73
    3251.76282.42295.08
    4256.65282.71296.10
    下载: 导出CSV

    表  4  Kissger法计算得到的$E_\text{a}$和${\mathrm{lg}}A_{\mathrm{k}} $

    Table  4.   $E_\text{a} $ and ${\mathrm{lg}}A_{\mathrm{k}} $ calculated through Kissinger method

    Samples $E_\text{a} $/(kJ·mol−1) lg Ak/(kJ·mol−1) R2
    1 103.61 6.69 0.984 2
    2 124.33 8.75 0.995 9
    3 151.42 10.97 0.989 0
    4 178.06 13.58 0.995 0
    下载: 导出CSV

    表  5  4种样品的$T_{\mathrm{b}} $和$T_{{\mathrm{SADT}}} $

    Table  5.   $T_{\mathrm{b}} $ and $T_{{\mathrm{SADT}}} $ of four kinds of samples

    SamplesTb/℃TSADT/℃
    1229.52188.96
    2261.12222.94
    3268.01240.67
    4282.67248.81
    下载: 导出CSV

    表  6  4种样品的$\Delta {H^ \ne } $、$\Delta {S^ \ne } $和$\Delta {G^ \ne } $

    Table  6.   $\Delta {H^ \ne } $、 $\Delta {S^ \ne } $ and $\Delta {G^ \ne } $ of four kinds of samples

    Samples ΔH/(kJ·mol−1) S/(J·mol−1·K−1) G/(kJ·mol−1)
    1 99.60 −63.47 130.21
    2 120.04 −24.45 132.65
    3 146.94 17.63 137.44
    4 173.67 67.74 137.94
    下载: 导出CSV
  • [1] 汪旭光. 乳化炸药 [M]. 2版. 北京: 冶金工业出版社, 2008: 3−5.

    WANG X G. Emulsion explosives [M]. 2nd ed. Beijing: Metallurgical Industry Press, 2008: 3−5.
    [2] 陈皓楠. 酰化磷脂复合乳化剂对现场混装乳化炸药基质稳定性能的影响 [D]. 淮南: 安徽理工大学, 2023: 13−14.

    CHEN H N. Effect of acylated phospholipid emulsifier on properties of field mixed emulsion explosive [D]. Huainan: Anhui University of Science and Technology, 2023: 13−14.
    [3] OXLEY J C, SMITH J L, ROGERS E, et al. Ammonium nitrate: thermal stability and explosivity modifiers [J]. Thermochimica Acta, 2002, 384(1/2): 23–45. doi: 10.1016/S0040-6031(01)00775-4
    [4] KALJUVEE T, EDRO E, KUUSIK R. Influence of lime-containing additives on the thermal behaviour of ammonium nitrate [J]. Journal of Thermal Analysis and Calorimetry, 2008, 92(1): 215–221. doi: 10.1007/s10973-007-8769-1
    [5] DJERDJEV A M, PRIYANANDA P, GORE J, et al. Safer emulsion explosives resulting from NO x inhibition [J]. Chemical Engineering Journal, 2021, 403: 125713. doi: 10.1016/j.cej.2020.125713
    [6] 邸云信, 冯超. 硫化矿内现场混装乳化炸药自燃自爆影响因素分析 [J]. 工程爆破, 2023, 29(4): 138–142. doi: 10.19931/j.EB.20230147

    DI Y X, FENG C. Analysis of influencing factors of spontaneous combustion and spontaneous explosion of on-site mixed emulsion explosive in sulfide ore [J]. Engineering Blasting, 2023, 29(4): 138–142. doi: 10.19931/j.EB.20230147
    [7] 刘伟, 郭子如, 王洋, 等. 耐热型铵油炸药的制备及性能 [J]. 火炸药学报, 2020, 43(4): 372–377. doi: 10.14077/j.issn.1007-7812.201908002

    LIU W, GUO Z R, WANG Y, et al. Preparation and properties of heat-resistant ammonium nitrate fuel oil explosive [J]. Chinese Journal of Explosives & Propellants, 2020, 43(4): 372–377. doi: 10.14077/j.issn.1007-7812.201908002
    [8] 林谋金, 代永富, 陆路, 等. 吸水树脂对粉状乳化炸药耐热及爆炸性能影响 [J]. 爆破, 2022, 39(4): 148–152, 170. doi: 10.3963/j.issn.1001-487X.2022.04.021

    LIN M J, DAI Y F, LU L, et al. Effect of super absorbent polymer on heat-resistant and explosive performance of powder emulsion explosives [J]. Blasting, 2022, 39(4): 148–152, 170. doi: 10.3963/j.issn.1001-487X.2022.04.021
    [9] 汪扬文, 何志伟, 孟涛, 等. 多孔粒状铵油炸药热分解抑制剂的研究 [J]. 火工品, 2021(4): 52–55. doi: 10.3969/j.issn.1003-1480.2021.04.014

    WANG Y W, HE Z W, MENG T, et al. Study on thermal decomposition inhibitor of porous granular ANFO explosive [J]. Initiators & Pyrotechnics, 2021(4): 52–55. doi: 10.3969/j.issn.1003-1480.2021.04.014
    [10] 吴春来. 尿素对乳化炸药水相的负面影响 [J]. 采矿技术, 2016, 16(2): 94–96. doi: 10.13828/j.cnki.ckjs.2016.02.034
    [11] 张功震, 何志伟, 冉宪文, 等. ANPyO@PDA复合材料的制备、表征及热分解性能 [J]. 高压物理学报, 2023, 37(6): 063402. doi: 10.11858/gywlxb.20230697

    ZHANG G Z, HE Z W, RAN X W, et al. Preparation, characterization and thermal decomposition properties of ANPyO@PDA composites [J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 063402. doi: 10.11858/gywlxb.20230697
    [12] 杨有万, 赵海荣, 张凯铭, 等. 现场混装乳化炸药基质的流变性研究 [J]. 爆破器材, 2018, 47(3): 14–18. doi: 10.3969/j.issn.1001-8352.2018.03.003

    YANG Y W, ZHAO H R, ZHANG K M, et al. Study on rheology of bulk emulsion explosive matrix [J]. Explosive Materials, 2018, 47(3): 14–18. doi: 10.3969/j.issn.1001-8352.2018.03.003
    [13] 吴红波, 杨柳, 沈占军, 等. 二甲基亚砜对乳胶基质耐低温性能及热分解特性的影响 [J]. 含能材料, 2022, 30(3): 242–249. doi: 10.11943/CJEM2021176

    WU H B, YANG L, SHEN Z J, et al. Effect of dimethyl sulfoxide on low temperature resistance and thermal decomposition of emulsion explosive matrix [J]. Chinese Journal of Energetic Materials, 2022, 30(3): 242–249. doi: 10.11943/CJEM2021176
    [14] 蒋小华, 王玮, 宫敬. 稠油包水乳状液的表观黏度 [J]. 化工学报, 2008, 59(3): 721–727. doi: 10.3321/j.issn:0438-1157.2008.03.029

    JIANG X H, WANG W, GONG J. Apparent viscosity of water-in-heavy crude oil emulsion [J]. Journal of Chemical Industry and Engineering (China), 2008, 59(3): 721–727. doi: 10.3321/j.issn:0438-1157.2008.03.029
    [15] 马平, 谭本岭, 叶辉, 等. 乳胶基质黏度影响因素研究 [J]. 工程爆破, 2015, 21(3): 9–12. doi: 10.3969/j.issn.1006-7051.2015.03.003

    MA P, TAN B L, YE H, et al. Studies on the influence factors of emulsion matrix viscosity [J]. Engineering Blasting, 2015, 21(3): 9–12. doi: 10.3969/j.issn.1006-7051.2015.03.003
    [16] 欧阳顺利, 张明哲, 胡庆成, 等. 二甲基亚砜水溶液表面张力及粘度与氢键的拉曼光谱研究 [J]. 光谱学与光谱分析, 2018, 38(9): 2778–2781. doi: 10.3964/j.issn.1000-0593(2018)09-2778-04

    OUYANG S L, ZHANG M Z, HU Q C, et al. Hydrogen bonding effect on the surface tension and viscosity of DMSO aqueous solutions studied by Raman spectroscopy [J]. Spectroscopy and Spectral Analysis, 2018, 38(9): 2778–2781. doi: 10.3964/j.issn.1000-0593(2018)09-2778-04
    [17] 龚悦, 何杰, 汪旭光, 等. 钛粉对乳化炸药爆轰性能和热分解特性的影响 [J]. 含能材料, 2017, 25(4): 304–308. doi: 10.11943/j.issn.1006-9941.2017.04.006

    GONG Y, HE J, WANG X G, et al. Influence of titanium powder on detonation performances and thermal decomposition characteristics of emulsion explosive [J]. Chinese Journal of Energetic Materials, 2017, 25(4): 304–308. doi: 10.11943/j.issn.1006-9941.2017.04.006
    [18] 武海英. 高分子乳化剂对现场混装乳化炸药稳定性的影响 [D]. 北京: 北京理工大学, 2016: 23−27.

    WU H Y. Effects of polymer emulsifiers on stability of site-mixed emulsion explosives [D]. Beijing: Beijing Institute of Technology, 2016: 23−27.
    [19] 黄胜松, 赵明生, 张义平, 等. 水相pH对现场混装乳化炸药基质储存稳定性的影响研究 [J]. 矿业研究与开发, 2020, 40(7): 111–114. doi: 10.13827/j.cnki.kyyk.2020.07.022

    HUANG S S, ZHAO M S, ZHANG Y P, et al. Effect of pH value of aqueous phase on storage stability of on-site mixed emulsion explosive matrix [J]. Mining Research and Development, 2020, 40(7): 111–114. doi: 10.13827/j.cnki.kyyk.2020.07.022
    [20] 魏国, 刘锋, 吴攀宇, 等. 油相配比对现场混装乳胶基质黏度及爆轰参数的影响 [J]. 工程爆破, 2022, 28(2): 105–110. doi: 10.19931/j.eb.20210048

    WEI G, LIU F, WU P Y, et al. Effect of oil phase ratio on viscosity and detonation parameters of on-site mixed emulsion matrix [J]. Engineering Blasting, 2022, 28(2): 105–110. doi: 10.19931/j.eb.20210048
    [21] 牛草原, 黄文尧, 刘小辉, 等. 多孔粒状硝酸铵含量对现场混装乳化炸药的性能影响 [J]. 火炸药学报, 2023, 46(11): 999–1006. doi: 10.14077/j.issn.1007-7812.202302017

    NIU C Y, HUANG W Y, LIU X H, et al. Influence of porous granular ammonium nitrate content on the performance of field mixed emulsion explosive [J]. Chinese Journal of Explosives & Propellants, 2023, 46(11): 999–1006. doi: 10.14077/j.issn.1007-7812.202302017
    [22] WANG S, XU Z X, WANG Q. Thermal decomposition mechanism of emulsion explosives with phosphatide [J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(2): 1053–1062. doi: 10.1007/s10973-015-5187-7
    [23] 胡洁, 黄文尧, 孙彦臣, 等. 六亚甲基四胺含量对铵胺炸药性能的影响 [J]. 高压物理学报, 2023, 37(5): 055201. doi: 10.11858/gywlxb.20230691

    HU J, HUANG W Y, SUN Y C, et al. Effect of hexamethylenetetramine content on the performance of ammonium-amine explosives [J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 055201. doi: 10.11858/gywlxb.20230691
    [24] 束学来, 郑炳旭, 郭子如, 等. 耐热炸药机理分析与优化浅析 [J]. 工程爆破, 2014, 20(5): 59–63. doi: 10.3969/j.issn.1006-7051.2014.05.013

    SHU X L, ZHENG B X, GUO Z R, et al. Mechanism and optimization analysis of heat-resistant explosives [J]. Engineering Blasting, 2014, 20(5): 59–63. doi: 10.3969/j.issn.1006-7051.2014.05.013
    [25] XIAO L B, GAO H X, ZHAO F Q, et al. Thermal behavior and safety of dihydroxylammonium 3,3’-dinitroamino-4,4’-azoxyfurazanate [J]. Chinese Journal of Explosives & Propellants, 2020, 43(1): 24–27, 32. doi: 10.14077/j.issn.1007-7812.201901016
    [26] 汤崭, 杨利, 乔小晶, 等. HMX热分解动力学与热安全性研究 [J]. 含能材料, 2011, 19(4): 396–400. doi: 10.3969/j.issn.1006-9941.2011.04.010

    TANG Z, YANG L, QIAO X J, et al. On thermal decomposition kinetics and thermal safety of HMX [J]. Chinese Journal of Energetic Materials, 2011, 19(4): 396–400. doi: 10.3969/j.issn.1006-9941.2011.04.010
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  6
  • PDF下载量:  0
出版历程
  • 收稿日期:  2024-07-05
  • 修回日期:  2024-07-26
  • 录用日期:  2024-07-27
  • 网络出版日期:  2024-12-10

目录

    /

    返回文章
    返回