弹丸高速撞击下玻璃复合装甲的损伤机理

黄友奇 史刘彤 高玉波 李志豪 黄翱翔

黄友奇, 史刘彤, 高玉波, 李志豪, 黄翱翔. 弹丸高速撞击下玻璃复合装甲的损伤机理[J]. 高压物理学报. doi: 10.11858/gywlxb.20240836
引用本文: 黄友奇, 史刘彤, 高玉波, 李志豪, 黄翱翔. 弹丸高速撞击下玻璃复合装甲的损伤机理[J]. 高压物理学报. doi: 10.11858/gywlxb.20240836
HUANG Youqi, SHI Liutong, GAO Yubo, LI Zhihao, HUANG Aoxiang. Damage Mechanism of Glass Composite Armor Subjected to Projectile at High Impact Velocity[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240836
Citation: HUANG Youqi, SHI Liutong, GAO Yubo, LI Zhihao, HUANG Aoxiang. Damage Mechanism of Glass Composite Armor Subjected to Projectile at High Impact Velocity[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240836

弹丸高速撞击下玻璃复合装甲的损伤机理

doi: 10.11858/gywlxb.20240836
基金项目: 国家自然科学基金(12172337, 11702257);山西省应用基础研究项目(20210302123022)
详细信息
    作者简介:

    黄友奇(1983-),男,硕士,高级工程师,主要从事视窗屏蔽、隐身、防弹、电加热等功能玻璃研究. E-mail:nanostar2008@163.com

    通讯作者:

    高玉波(1986-),男,博士,副教授,主要从事材料动态力学性能、结构侵彻及穿甲动力学、材料本构关系与损伤机理、材料和结构大变形数值模拟技术研究. E-mail:gaoyb@nuc.edu.cn

  • 中图分类号: TJ04; TQ171.1; O521.9

Damage Mechanism of Glass Composite Armor Subjected to Projectile at High Impact Velocity

  • 摘要: 玻璃叠层复合装甲具有良好的透光性和抗冲击性能,广泛应用于军事和民用防护领域。由于玻璃容易发生失效或破碎,为了获得靶板的冲击损伤机制,开展了钢球高速撞击下的试验和数值模拟研究。结果表明,在第1层玻璃破碎锥和应力波传播的作用下,第2层玻璃破碎锥体积和整体损伤面积显著大于第1层玻璃。弹丸高速撞击下,玻璃层形成了大量径向和环向裂纹,其中,在Rayleigh波作用下形成的环向裂纹可以阻止径向裂纹传播造成的次生裂纹扩展。根据损伤程度不同,玻璃层分为粉末区、小尺寸碎片区、大尺寸碎片区和径向裂纹区。受应力波传播、靶板弯曲变形以及破碎玻璃的体积膨胀共同作用,玻璃层沿厚度方向出现了竖向裂纹和平行破碎锥面的斜向裂纹。玻璃之间聚氨酯黏结层可造成竖向裂纹偏转,在一定程度上阻碍了裂纹沿厚度方向传播。玻璃/聚氨酯/聚碳酸酯之间,受介质波阻抗不同,导致界面的剪切波作用,胶层出现了局部分层现象。聚碳酸酯依靠自身的塑性变形聚集了破碎装玻璃颗粒,形成了局部高应力状态区域,完成了对弹丸的持续阻碍作用。因此,聚氨酯胶层的变形主要为破碎锥对其直接剪切作用所致。

     

  • 图  试验装置示意图

    Figure  1.  Sketch of the experimental setup

    图  有限元模型

    Figure  2.  Finite element model

    图  弹丸以517 m/s高速撞击玻璃复合装甲的侵彻历程

    Figure  3.  Penetration process of glass composite amor subjected to projectile at high velocity of 517 m/s

    图  弹丸动能历程

    Figure  4.  Kinetic energy history of ball projectile

    图  侵彻速度为517 m/s时玻璃复合装甲的面内损伤

    Figure  5.  In-plane damage of glass composite armor at penetration speed of 517 m/s

    图  玻璃复合装甲沿厚度方向的损伤

    Figure  6.  Damage of glass composite armor along thickness direction

    图  PU胶层的受力和变形特征

    Figure  7.  Stress and deformation characteristics of the PU adhesive layer

    图  PU胶层的剪应力历程

    Figure  8.  Shear stress history of PU adhesive layer

    表  1  玻璃材料的JH2本构模型参数

    Table  1.   Parameters of JH2 constitutive model for glass material

    ρ/(kg·m–3) G/GPa K1/GPa K2/GPa K3/GPa T/GPa HEL/GPa pHEL/GPa
    248829.640.8−136.6239.80.07862.75
    ABCMND1D2
    1.6791.7830.01440.6370.9820.0050.8
    下载: 导出CSV

    表  2  PU材料的Mooney-Rivlin本构模型参数

    Table  2.   Parameters of Mooney-Rivlin constitutive model for PU material

    ρ/(kg·m–3)νC10/MPaC01/MPa
    11000.4951.60.06
    下载: 导出CSV

    表  3  PC材料的简化JC本构模型参数

    Table  3.   Parameters of simplified JC constitutive model for PC material

    ρ/(kg·m–3)νE/GPaA1/MPaB1/MPaN1C1
    12000.382.34561762.670.09
    下载: 导出CSV

    表  4  试验与数值模拟的侵彻深度对比

    Table  4.   Comparison of depth of penetration between experiment and simulation

    No.Impact velocity/(m·s–1)Depth of penetration/mm
    Exp.Sim.Error/%
    13364.94.116.30
    24135.86.15.20
    351711.310.29.70
    463413.415.314.20
    下载: 导出CSV
  • [1] 韩国庆, 张先锋, 谈梦婷, 等. 透明陶瓷材料冲击响应特性及损伤演化规律研究 [J]. 力学进展, 2023, 53(3): 497–560. doi: 10.6052/1000-0992-23-007

    HAN G Q, ZHANG X F, TAN M T, et al. Research on impact response characteristics and damage evolution law of transparent ceramics [J]. Advances in Mechanics, 2023, 53(3): 497–560. doi: 10.6052/1000-0992-23-007
    [2] KLEMENT R, ROLC S, MIKULIKOVA R, et al. Transparent armour materials [J]. Journal of the European Ceramic Society, 2008, 28(5): 1091–1095. doi: 10.1016/j.jeurceramsoc.2007.09.036
    [3] 牛欢欢, 张英杰, 李志强. 爆炸载荷下中空钢化夹层玻璃的动态响应 [J]. 高压物理学报, 2021, 35(6): 064102. doi: 10.11858/gywlxb.20210764

    NIU H H, ZHANG Y J, LI Z Q. Dynamic response of hollow tempered laminated glass under explosive load [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064102. doi: 10.11858/gywlxb.20210764
    [4] GRUJICIC M, BELL W C, PANDURANGAN B. Design and material selection guidelines and strategies for transparent armor systems [J]. Materials & Design, 2012, 34: 808–819. doi: 10.1016/j.matdes.2011.07.007
    [5] XU J, LI Y B, LIU B H, et al. Experimental study on mechanical behavior of PVB laminated glass under quasi-static and dynamic loadings [J]. Composites Part B: Engineering, 2011, 42(2): 302–308. doi: 10.1016/j.compositesb.2010.10.009
    [6] LI D, ZHANG H Y, LEI X W, et al. Three-stage breakage model for laminated glass plate under low-velocity impact [J]. Ceramics International, 2023, 49(2): 2648–2662. doi: 10.1016/j.ceramint.2022.09.245
    [7] CHEN J J, XU J, YAO X F, et al. Experimental investigation on the radial and circular crack propagation of PVB laminated glass subject to dynamic out-of-plane loading [J]. Engineering Fracture Mechanics, 2013, 112/113: 26–40. doi: 10.1016/j.engfracmech.2013.09.010
    [8] WANG X E, YANG J, LIU Q, et al. Experimental investigations into SGP laminated glass under low velocity impact [J]. International Journal of Impact Engineering, 2018, 122: 91–108. doi: 10.1016/j.ijimpeng.2018.06.010
    [9] CAI L, ZHANG Y Q, WEI X R, et al. Study on the effect of different sandwich materials on the impact resistance of laminated glass [J]. Construction and Building Materials, 2022, 360: 129603. doi: 10.1016/j.conbuildmat.2022.129603
    [10] 邓佳杰, 章健, 张先锋, 等. YAG透明陶瓷复合靶抗弹机理研究 [J]. 北京理工大学学报, 2022, 42(6): 620–628. doi: 10.15918/j.tbit1001-0645.2021.230

    DENG J J, ZHANG J, ZHANG X F, et al. Investigation on bullet proof mechanism of YAG transparent ceramic composite targets [J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 620–628. doi: 10.15918/j.tbit1001-0645.2021.230
    [11] 刘滢, 黄君伟, 郭新涛, 等. MgAl2O4透明陶瓷复合结构抗弹性能的数值模拟研究 [J]. 稀有金属, 2023, 47(4): 529–537. doi: 10.13373/j.cnki.cjrm.XY20110010

    LIU Y, HUANG J W, GUO X T, et al. Numerical simulation of ballistic resistance of MgAl2O4 transparent laminate structure [J]. Chinese Journal of Rare Metals, 2023, 47(4): 529–537. doi: 10.13373/j.cnki.cjrm.XY20110010
    [12] WANG X E, MENG Y R, YANG J, et al. Optimal kernel extreme learning machine model for predicting the fracture state and impact response of laminated glass panels [J]. Thin-Walled Structures, 2021, 162: 107541. doi: 10.1016/j.tws.2021.107541
    [13] VEDRTNAM A, PAWAR S J. Experimental and simulation studies on fracture and adhesion test of laminated glass [J]. Engineering Fracture Mechanics, 2018, 190: 461–470. doi: 10.1016/j.engfracmech.2017.12.044
    [14] OSNES K, HOLMEN J K, GRUE T, et al. Perforation of laminated glass: an experimental and numerical study [J]. International Journal of Impact Engineering, 2021, 156: 103922. doi: 10.1016/j.ijimpeng.2021.103922
    [15] STRASSBURGER E, BAUER S, POPKO G. Damage visualization and deformation measurement in glass laminates during projectile penetration [J]. Defence Technology, 2014, 10(2): 226–238. doi: 10.1016/j.dt.2014.05.008
    [16] GAO Y B, LI D C, ZHANG W, et al. Constitutive modelling of the TiB2-B4C composite by experiments, simulation and neutral network [J]. International Journal of Impact Engineering, 2019, 132: 103310. doi: 10.1016/j.ijimpeng.2019.05.024
    [17] 贾哲. 弹道冲击下防弹玻璃的损伤机理和抗侵彻性能研究 [D]. 太原: 中北大学, 2023: 21–33.

    JIA Z. Study on damage mechanism and anti-penetration performance of bulletproof glass under ballistic impact [D]. Taiyuan: North University of China, 2023: 21–33.
    [18] SPATHIS G D. Polyurethane elastomers studied by the Mooney-Rivlin equation for rubbers [J]. Journal of Applied Polymer Science, 1991, 43(3): 613–620. doi: 10.1002/app.1991.070430323
    [19] SARIKAYA M, GÜDEN M, KAMBUR Ç, et al. Development of the Johnson-Cook flow stress and damage parameters for the impact response of polycarbonate: experimental and numerical approach [J]. International Journal of Impact Engineering, 2023, 179: 104674. doi: 10.1016/j.ijimpeng.2023.104674
    [20] 刘赛, 张伟贵, 吕振华. 穿甲燃烧弹侵彻陶瓷复合装甲和玻璃复合装甲的FEM-SPH耦合计算模型 [J]. 爆炸与冲击, 2021, 41(1): 014201. doi: 10.11883/bzycj-2020-0069

    LIU S, ZHANG W G, LU Z H. An FEM-SPH coupled model for simulating penetration of armor-piercing bullets into ceramic composite armors and glass composite armors [J]. Explosion and Shock Waves, 2021, 41(1): 014201. doi: 10.11883/bzycj-2020-0069
    [21] MOHAGHEGHIAN I, CHARALAMBIDES M N, WANG Y, et al. Effect of the polymer interlayer on the high-velocity soft impact response of laminated glass plates [J]. International Journal of Impact Engineering, 2018, 120: 150–170. doi: 10.1016/j.ijimpeng.2018.06.002
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  8
  • PDF下载量:  2
出版历程
  • 收稿日期:  2024-06-26
  • 修回日期:  2024-08-19
  • 网络出版日期:  2025-01-03

目录

    /

    返回文章
    返回