关于层状结构聚合氮存在性的探讨

刘静仪 吴彬彬 陶雨 蒲梅芳 周春银 雷力

刘静仪, 吴彬彬, 陶雨, 蒲梅芳, 周春银, 雷力. 关于层状结构聚合氮存在性的探讨[J]. 高压物理学报, 2024, 38(4): 040105. doi: 10.11858/gywlxb.20240821
引用本文: 刘静仪, 吴彬彬, 陶雨, 蒲梅芳, 周春银, 雷力. 关于层状结构聚合氮存在性的探讨[J]. 高压物理学报, 2024, 38(4): 040105. doi: 10.11858/gywlxb.20240821
LIU Jingyi, WU Binbin, TAO Yu, PU Meifang, ZHOU Chunyin, LEI Li. On the Existence of Layered Polymeric Nitrogen[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040105. doi: 10.11858/gywlxb.20240821
Citation: LIU Jingyi, WU Binbin, TAO Yu, PU Meifang, ZHOU Chunyin, LEI Li. On the Existence of Layered Polymeric Nitrogen[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040105. doi: 10.11858/gywlxb.20240821

关于层状结构聚合氮存在性的探讨

doi: 10.11858/gywlxb.20240821
基金项目: 国家自然科学基金(12374013,U2030107,11774247)
详细信息
    作者简介:

    刘静仪(1997-),女,博士研究生,主要从事高压下凝聚态物质行为研究. E-mail:liujingyi201903@163.com

    通讯作者:

    雷 力(1980-),男,博士,研究员,主要从事极端条件下的光谱学与高压物理研究. E-mail:lei@scu.edu.cn

  • 中图分类号: O521.2

On the Existence of Layered Polymeric Nitrogen

  • 摘要: 在高温高压的极端条件下,分子晶体氮会打破传统三键机制向单键聚合态转变。氮在高压下的独特解离机制使聚合氮的研究意义超越了含能材料范畴,在基础物理学领域亦有深刻的科学意义。继立方偏转聚合氮cg-N(空间群I213)之后,第2个在实验上被发现的层状结构聚合氮LP-N(空间群Pba2)一直存在争议。主要的问题在于,LP-N的结构除了没有被高压X射线衍射实验验证之外,还与随后被发现的黑磷结构聚合氮BP-N(空间群Cmca)具有相近的合成温压条件和合成路径以及几乎相同的拉曼光谱特征。LP-N的合成很可能具有独特的相变动力学势垒。为此,选择独辟蹊径,从低温固态分子氮λ-N2出发,利用双面激光加热金刚石压砧技术,结合高压同步辐射X射线衍射和高压拉曼光谱分析方法,在约140 GPa、2600 K的条件下观察到了具有Pba2结构的聚合氮LP-N。结合第一性原理计算,分析了它的原子体积随压力的变化关系(p-V曲线),并探讨了LP-N高温高压合成动力学因素。研究结果不仅使我们更全面地认识LP-N,还进一步揭示了聚合氮的高压路径依赖特性。

     

  • 图  (a) 氮的p-T相图与聚合氮的合成条件(相图的部分数据来自文献[1314, 1617, 34, 3739]),(b)~(c) 双面LHDAC实验示意图,(d)~(e) 激光加热过程中的光学照片,(f) 黑体辐射法测定温度的拟合曲线

    Figure  1.  (a) p-T phase diagram of nitrogen and the synthesis conditions of polymeric nitrogen (Part of the phase diagram is obtained from Refs. [1314, 1617, 34, 3739].); (b)−(c) schematic diagram of double-sided LHDAC experiments; (d)−(e) optical photos during laser heating; (f) fitting curve of temperature determined by black body radiation method

    图  (a) 激光加热前样品在55、115和140 GPa压力下的拉曼光谱,(b) 激光加热后样品在141 GPa压力下的拉曼光谱(插图为对应压力下样品腔的光学图像)

    Figure  2.  (a) Raman spectra of sample at 55, 115 and 140 GPa before laser heating, (b) Raman spectra of sample at 141 GPa after laser heating (Inset: optical images of sample chamber at corresponding pressure respectively.)

    图  (a) 激光加热后样品在卸压过程中的高压XRD谱,(b) 样品卸压至123 GPa时的XRD精修谱,(c) BP-N和LP-N在123 GPa压力下的计算XRD谱与对应的晶体结构(插图为二维XRD图)

    Figure  3.  (a) High-pressure XRD spectra of the sample after laser heating on decompression, (b) XRD refined spectrum of the sample decompressed to 123 GPa, (c) calculated XRD spectra of BP-N and LP-N at 123 GPa and the corresponding crystal structure (Inset: two dimension XRD diagram)

    图  聚合氮cg-N、LP-N、HLP-N和BP-N的原子体积随压力的变化关系(插图为聚合氮cg-N、BP-N和LP-N的相对计算焓值(ΔH),以LP-N(HPba2)的焓值[30]为基准)

    Figure  4.  (a) Volume per atom dependence of pressure on polymeric nitrogen cg-N, LP-N, HLP-N and BP-N (Inset: the relative calculated enthalpy value (ΔH) of polymeric nitrogen cg-N, BP-N and LP-N based on LP-N (HPba2) [30])

    表  1  由XRD谱精修得到的晶格参数

    Table  1.   Lattice parameters obtained from Rietveld refinement

    MaterialSpace groupabcα/(°)β/(°)γ/(°)V3
    LP-NPba24.2403(2)4.3840(7)4.4600(7)90909082.93(5)
    cg-NI2133.1501(3)3.1501(3)3.1501(3)90909031.25(9)
    ReP63/mmc2.8391(3)2.8391(3)3.8520(4)909012026.89(2)
    下载: 导出CSV
  • [1] JORDAN T H, SMITH H W, STREIB W E, et al. Single-crystal X-ray diffraction studies of α-N2 and β-N2 [J]. The Journal of Chemical Physics, 1964, 41(3): 756–759. doi: 10.1063/1.1725956
    [2] STREIB W E, JORDAN T H, LIPSCOMB W N. Single-crystal X-ray diffraction study of β nitrogen [J]. The Journal of Chemical Physics, 1962, 37(12): 2962–2965. doi: 10.1063/1.1733125
    [3] SCHUCH A F, MILLS R L. Crystal structures of the three modifications of nitrogen 14 and nitrogen 15 at high pressure [J]. The Journal of Chemical Physics, 1970, 52(12): 6000–6008. doi: 10.1063/1.1672899
    [4] CROMER D T, MILLS R L, SCHIFERI D, et al. The structure of N2 at 49 kbar and 299 K [J]. Acta Crystallographica Section B, 1981, 37(1): 8–11. doi: 10.1107/S0567740881002070
    [5] OLIJNYK H. High pressure X-ray diffraction studies on solid N2 up to 43.9 GPa [J]. The Journal of Chemical Physics, 1990, 93(12): 8968–8972. doi: 10.1063/1.459236
    [6] LANIEL D, TRYBEL F, ASLANDUKOV A, et al. Structure determination of ζ-N2 from single-crystal X-ray diffraction and theoretical suggestion for the formation of amorphous nitrogen [J]. Nature Communications, 2023, 14(1): 6207. doi: 10.1038/s41467-023-41968-2
    [7] GREGORYANZ E, GONCHAROV A F, HEMLEY R J, et al. Raman, infrared, and X-ray evidence for new phases of nitrogen at high pressures and temperatures [J]. Physical Review B, 2002, 66(22): 224108. doi: 10.1103/PhysRevB.66.224108
    [8] GREGORYANZ E, GONCHAROV A F, SANLOUP C, et al. High P-T transformations of nitrogen to 170 GPa [J]. The Journal of Chemical Physics, 2007, 126(18): 184505. doi: 10.1063/1.2723069
    [9] GREGORYANZ E, GONCHAROV A F, HEMLEY R J, et al. High-pressure amorphous nitrogen [J]. Physical Review B, 2001, 64(5): 052103. doi: 10.1103/PhysRevB.64.052103
    [10] FROST M, HOWIE R T, DALLADAY-SIMPSON P, et al. Novel high-pressure nitrogen phase formed by compression at low temperature [J]. Physical Review B, 2016, 93(2): 024113. doi: 10.1103/PhysRevB.93.024113
    [11] LIU S, PU M F, TANG Q Q, et al. Raman spectroscopy and phase stability of λ-N2 [J]. Solid State Communications, 2020, 310: 113843. doi: 10.1016/j.ssc.2020.113843
    [12] EREMETS M I, GAVRILIUK A G, TROJAN I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Materials, 2004, 3(8): 558–563. doi: 10.1038/nmat1146
    [13] TOMASINO D, KIM M, SMITH J, et al. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity [J]. Physical Review Letters, 2014, 113(20): 205502. doi: 10.1103/PhysRevLett.113.205502
    [14] LEI L, TANG Q Q, ZHANG F, et al. Evidence for a new extended solid of nitrogen [J]. Chinese Physics Letters, 2020, 37(6): 068101. doi: 10.1088/0256-307X/37/6/068101
    [15] LANIEL D, GENESTE G, WECK G, et al. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa [J]. Physical Review Letters, 2019, 122(6): 066001. doi: 10.1103/PhysRevLett.122.066001
    [16] LANIEL D, WINKLER B, FEDOTENKO T, et al. High-pressure polymeric nitrogen allotrope with the black phosphorus structure [J]. Physical Review Letters, 2020, 124(21): 216001. doi: 10.1103/PhysRevLett.124.216001
    [17] JI C, ADELEKE A A, YANG L X, et al. Nitrogen in black phosphorus structure [J]. Science Advances, 2020, 6(23): eaba9206. doi: 10.1126/sciadv.aba9206
    [18] IOTA V, YOO C S, CYNN H. Quartzlike carbon dioxide: an optically nonlinear extended solid at high pressures and temperatures [J]. Science, 1999, 283(5407): 1510–1513. doi: 10.1126/science.283.5407.1510
    [19] YAN J W, TÓTH O, XU W, et al. High-pressure structural evolution of disordered polymeric CS2 [J]. The Journal of Physical Chemistry Letters, 2021, 12(30): 7229–7235. doi: 10.1021/acs.jpclett.1c01762
    [20] BERNARD S, CHIAROTTI G L, SCANDOLO S, et al. Decomposition and polymerization of solid carbon monoxide under pressure [J]. Physical Review Letters, 1998, 81(10): 2092–2095. doi: 10.1103/PhysRevLett.81.2092
    [21] ZHANG H C, TÓTH O, LIU X D, et al. Pressure-induced amorphization and existence of molecular and polymeric amorphous forms in dense SO2 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(16): 8736–8742. doi: 10.1073/pnas.1917749117
    [22] CHRISTE K O. Recent advances in the chemistry of ${{\mathrm{N}}_5^+} $ , ${{\mathrm{N}}_5^- }$ and high-oxygen compounds [J]. Propellants, Explosives, Pyrotechnics, 2007, 32(3): 194–204. doi: 10.1002/prep.200700020
    [23] NELLIS W J, HOLMES N C, MITCHELL A C, et al. Phase transition in fluid nitrogen at high densities and temperatures [J]. Physical Review Letters, 1984, 53(17): 1661–1664. doi: 10.1103/PhysRevLett.53.1661
    [24] MCMAHAN A K, LESAR R. Pressure dissociation of solid nitrogen under 1 Mbar [J]. Physical Review Letters, 1985, 54(17): 1929–1932. doi: 10.1103/PhysRevLett.54.1929
    [25] MARTIN R M, NEEDS R J. Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures [J]. Physical Review B, 1986, 34(8): 5082–5092. doi: 10.1103/PhysRevB.34.5082
    [26] REICHLIN R, SCHIFERL D, MARTIN S, et al. Optical studies of nitrogen to 130 GPa [J]. Physical Review Letters, 1985, 55(14): 1464–1467. doi: 10.1103/PhysRevLett.55.1464
    [27] MAILHIOT C, YANG L H, MCMAHAN A K. Polymeric nitrogen [J]. Physical Review B, 1992, 46(22): 14419–14435. doi: 10.1103/PhysRevB.46.14419
    [28] EREMETS M I, HEMLEY R J, MAO H K, et al. Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability [J]. Nature, 2001, 411(6834): 170–174. doi: 10.1038/35075531
    [29] GONCHAROV A F, GREGORYANZ E, MAO H K, et al. Optical evidence for a nonmolecular phase of nitrogen above 150 GPa [J]. Physical Review Letters, 2000, 85(6): 1262–1265. doi: 10.1103/PhysRevLett.85.1262
    [30] WANG X L, WANG Y C, MIAO M S, et al. Cagelike diamondoid nitrogen at high pressures [J]. Physical Review Letters, 2012, 109(17): 175502. doi: 10.1103/PhysRevLett.109.175502
    [31] LEI L, LIU J Y, ZHANG H Y. Polymeric nitrogen: a review of experimental synthesis method, structure properties and lattice dynamic characterization from large scientific facilities and extreme spectroscopy perspectives [J]. Energetic Materials Frontiers, 2023, 4(3): 158–168. doi: 10.1016/j.enmf.2023.09.005
    [32] MA Y M, OGANOV A R, LI Z W, et al. Novel high pressure structures of polymeric nitrogen [J]. Physical Review Letters, 2009, 102(6): 065501. doi: 10.1103/PhysRevLett.102.065501
    [33] ADELEKE A A, GRESCHNER M J, MAJUMDAR A, et al. Single-bonded allotrope of nitrogen predicted at high pressure [J]. Physical Review B, 2017, 96(22): 224104. doi: 10.1103/PhysRevB.96.224104
    [34] YOO C S, TOMASINO D, SMITH J, et al. High energy density nitrogen-rich extended solids [J]. AIP Conference Proceedings, 2017, 1793(1): 130007. doi: 10.1063/1.4971718
    [35] AKAHAMA Y, KAWAMURA H. High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range [J]. Journal of Applied Physics, 2004, 96(7): 3748–3751. doi: 10.1063/1.1778482
    [36] ZINN A S, SCHIFERL D, NICOL M F. Raman spectroscopy and melting of nitrogen between 290 and 900 K and 2.3 and 18 GPa [J]. The Journal of Chemical Physics, 1987, 87(2): 1267–1271. doi: 10.1063/1.453310
    [37] LIPP M J, KLEPEIS J P, BAER B J, et al. Transformation of molecular nitrogen to nonmolecular phases at megabar pressures by direct laser heating [J]. Physical Review B, 2007, 76(1): 014113. doi: 10.1103/PhysRevB.76.014113
    [38] CHENG P, YANG X, ZHANG X, et al. Polymorphism of polymeric nitrogen at high pressures [J]. The Journal of Chemical Physics, 2020, 152(24): 244502. doi: 10.1063/5.0007453
    [39] LIU Y, SU H P, NIU C P, et al. Synthesis of black phosphorus structured polymeric nitrogen [J]. Chinese Physics B, 2020, 29(10): 106201. doi: 10.1088/1674-1056/aba9bd
    [40] FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Physical Review B, 2000, 61(20): 14095–14107. doi: 10.1103/PhysRevB.61.14095
    [41] EREMETS M I, GAVRILIUK A G, TROJAN I A. Single-crystalline polymeric nitrogen [J]. Applied Physics Letters, 2007, 90(17): 171904. doi: 10.1063/1.2731679
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  41
  • PDF下载量:  40
出版历程
  • 收稿日期:  2024-05-31
  • 修回日期:  2024-06-19
  • 网络出版日期:  2024-07-16
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回