高温高压对三元预混燃料爆炸特性的影响

朱源 姜根柱 王筱蓉 郭宏展 苏傲成

袁琴, 李帅锜, 周礼, 贺端威. 锗在高压下的往复相变行为[J]. 高压物理学报, 2022, 36(5): 051104. doi: 10.11858/gywlxb.20220578
引用本文: 朱源, 姜根柱, 王筱蓉, 郭宏展, 苏傲成. 高温高压对三元预混燃料爆炸特性的影响[J]. 高压物理学报, 2025, 39(1): 011303. doi: 10.11858/gywlxb.20240818
YUAN Qin, LI Shuaiqi, ZHOU Li, HE Duanwei. Reciprocating Phase Transitions Behavior of Germanium under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 051104. doi: 10.11858/gywlxb.20220578
Citation: ZHU Yuan, JIANG Genzhu, WANG Xiaorong, GUO Hongzhan, SU Aocheng. Effect of High Temperature and High Pressure on the Explosion Characteristics of Ternary Premixed Fuel[J]. Chinese Journal of High Pressure Physics, 2025, 39(1): 011303. doi: 10.11858/gywlxb.20240818

高温高压对三元预混燃料爆炸特性的影响

doi: 10.11858/gywlxb.20240818
基金项目: 国家自然科学基金(52350410458)
详细信息
    作者简介:

    朱 源(1999-),男,硕士研究生,主要从事清洁燃料爆炸特性研究. E-mail:1165130610@qq.com

    通讯作者:

    姜根柱(1979-),男,硕士,副教授,主要从事绿色替代燃料燃烧特性研究. E-mail:jianggenzhu2just@163.com

  • 中图分类号: O389; O521.2; X932

Effect of High Temperature and High Pressure on the Explosion Characteristics of Ternary Premixed Fuel

  • 摘要: 乙醇/甲烷/氢气(C2H5OH/CH4/H2)作为一种新型的替代燃料,研究其爆炸特性对于我国新能源的可持续发展具有重要意义。在不同的当量比(0.8~1.4)、初始压力(0.1、0.2和0.4 MPa)和初始温度(370、400和450 K)下,从实验和化学动力学角度分析了其对关键爆炸特性参数,如峰值爆炸压力、峰值爆炸压力上升速率、爆炸时间以及爆燃指数的影响。结果表明,爆炸特性参数在当量比为1.2~1.3之间时出现极值。峰值爆炸压力与初始压力呈线性正相关,而与初始温度呈线性负相关。增大初始压力,火焰锋面裂纹、胞化程度加深,峰值爆炸压力增大。此外,实验工况下评估的最大爆燃指数为20.83 MPa·m/s,表明预混燃料的燃烧处于相对安全水平。基元反应敏感性分析表明:爆燃反应与H和OH自由基密切相关,而R1、R8、R24、R96是影响爆炸反应强度最重要的4个基元反应。研究成果可为C2H5OH/CH4/H2三元混合燃料在实际燃烧装置中的应用、燃料安全性评估以及爆炸事故预防提供参考。

     

  • TC4钛合金是一种α+β型中强度钛合金,具有较高的强度和较优异的塑性,在航空、航天、船舶以及兵器领域应用广泛[1]。鸟撞问题是飞机结构在起降过程中面临的主要威胁之一。鸟撞发生时,鸟体在毫秒级时间内瞬间冲击机体结构。高速冲击产生的巨大能量将导致机身结构严重损伤,从而引发伤亡事故。因此,国际适航标准要求所有向前部件在使用前必须分析其抗鸟撞性能。

    大量的研究表明,鸟体在高速冲击作用下表现出明显的流体流动飞溅特性。近年来,诸多学者针对飞机结构的抗鸟撞性能开展了大量研究工作。普遍认为,高速鸟撞冲击问题是一个应变率相关的流固耦合问题。目前结构抗鸟撞性能的数值分析方法主要有3种:拉格朗日有限元法(Lagrangian finite element)、任意拉格朗日-欧拉法(Arbitrary Lagrange-Euler,ALE)和光滑粒子流体动力学方法(Smooth particle hydro-dynamic,SPH)。采用拉格朗日有限元法分析高速鸟撞冲击时,因鸟体结构变形大,致使单元发生畸变,故拉格朗日有限元法只适合模拟低速鸟撞。SPH方法是一种基于拉格朗日技术的自适应无网格粒子法,将其与有限元方法进行耦合,可在流固耦合问题求解中展现显著的优势[2-3]。由于SPH粒子在空间相互独立,因此SPH法比拉格朗日有限元法和ALE法更适于解决高速鸟撞冲击问题[4]。例如:刘军等[5]通过对比鸟撞平板叶片实验结果和SPH法及拉格朗日有限元法数值分析结果,发现SPH方法与实验结果更接近;刘富等[6]采用SPH方法进行了2024-T3铝合金平板抗高速鸟撞冲击性能研究,得到了与实验结果相近的模拟结果;Liu等[7]通过不同速度的平板鸟撞冲击实验和数值分析,研究了适用于不同鸟撞速度的鸟体模型;姚小虎等[8]通过鸟撞圆弧风挡实验和数值计算,分析了风挡玻璃在鸟撞冲击过程中的损伤破坏。

    本研究采用三维图像相关法(3 dimensional digital correlate,3D-DIC),分析TC4钛合金平板高速鸟撞过程中的变形场,基于SPH方法和TC4钛合金的Johnson-Cook动态损伤模型,建立TC4钛合金平板鸟撞数值模型,并将模拟结果与鸟撞实验进行对比验证。

    鸟撞实验装置由鸟弹发射系统、TC4钛合金靶板、速度测试系统、照明系统和高速摄像系统组成。实验装置如图1所示。本实验使用的鸟弹为长L = 228 mm、直径D = 114 mm的明胶弹。鸟弹由空气炮发射,利用激光测速仪记录发射速度,激光测速仪的系统误差小于0.5%。为了解析TC4钛合金靶板背面的三维变形场,在靶板背面设置两台I-SPEED 716型高速摄影机,拍摄帧率设置为104帧每秒。位于靶板正面的两台SA-X型高速摄影机记录鸟弹飞行轨迹和撞击靶板时的响应,保证鸟弹垂直撞击TC4钛合金靶板。实验开始之前,进行调焦、视场校准和同步设置。将4台高速摄影机的触发开关通过BNC线引至操作间,其中用于动态3D-DIC测量的两台相机使用转接头连接,以实现同步触发。高速摄影机布局如图2所示。

    图  1  实验装置示意图
    Figure  1.  Schematic of experimental apparatus
    图  2  高速摄影机布局
    Figure  2.  High speed camera arrangement

    试件材料为TC4钛合金平板,尺寸为600 mm × 600 mm × 1.6 mm。通过均匀分布的16颗M10螺栓及4.0 mm厚的夹具,将试件固定在试验工装上,夹具尺寸与螺栓分布如图3所示。

    图  3  靶板尺寸
    Figure  3.  Size of target board

    鸟撞实验共设3个发射速度,分别为149、167和180 m/s。每组进行4次重复实验。图4显示了3种速度工况下鸟撞实验结果。图4中第1行的3幅图为平板正面高速摄影图像,可以看出:鸟弹包裹在弹托中由炮管发射,在空气阻力和实验舱入射口的作用下,鸟弹和弹托在撞击TC4钛合金平板前完全分离。弹托保证了鸟弹在发射过程中的整体形状和结构不受炮管内高压气体的破坏,弹托与鸟弹的完全分离消除了弹托对TC4平板鸟撞响应的影响。图4中第2行和第3行图像分别显示了TC4钛合金平板的正面和背面鸟撞冲击结果。发射速度为149 m/s的4次实验中,TC4钛合金平板均未发生破坏;发射速度为167 m/s的4次实验中,2次发生破坏,2次未发生破坏;而发射速度为180 m/s的4次实验中,平板均发生破坏。

    图  4  149、167和180 m/s的鸟撞实验结果
    Figure  4.  Results of bird strike experiments at the speed of 149, 167 and 180 m/s

    图5为TC4钛合金平板破坏照片。鸟体撞击平板后产生的拉伸波向外传播,在螺栓处产生剪切作用,平板发生了剪切破坏。

    图  5  TC4钛合金平板破坏照片
    Figure  5.  Failure of TC4 titanium alloy plate

    数值计算采用的鸟体几何模型与实验相同,为两端半球状、中间圆柱体的胶囊状柱体,长径比L/D = 2,如图6所示。鸟体模型的质量为1.8 kg。采用SPH单元模拟高速鸟撞冲击过程中的鸟体流体状飞溅,鸟体材料参数列于表1

    表  1  鸟体材料参数
    Table  1.  Material parameters of bird body
    Density/(kg·m−3Elastic modulus/GPaPoisson’s ratioYield stress/MPaFailure strainTangent modulus/MPa
    9280.0680.490.691.255
    下载: 导出CSV 
    | 显示表格
    图  6  鸟弹的几何尺寸
    Figure  6.  Geometry of bird ball

    高速鸟撞实验过程中,靶板夹具和支撑架的刚度足够大,夹具和支撑架只发生线弹性变形,因此采用钢材的线弹性本构模型描述。TC4钛合金平板在高速鸟撞冲击载荷作用下发生了大变形和损伤破坏。实验发现,TC4钛合金平板的主要破坏形式是剪切破坏,因此在数值仿真计算中需要考虑剪应力的影响。大量实验表明,钛合金材料具有拉压不对称性,需要对von Mises屈服准则进行修正。本研究将Johnson-Cook动态本构模型和Johnson-Cook损伤失效模型引入邹学韬等[9]提出的von Mises修正本构框架中。该本构可以表征TC4钛合金在强冲击载荷作用下的塑性流动应力和损伤破坏行为。Johnson-Cook动态本构模型的表达式为

    σs=(A+Bεn)(1+Cln˙ε)(1Tm)
    (1)

    式中:σs为塑性流动应力;A为参考应变率下的屈服应力;Bn为应变强化系数;ε为等效塑性应变;C为应变率敏感系数;˙ε=˙ε/˙ε0为无量纲应变率,˙ε0为参考应变率;T=(TTr)/(TmTr)为无量纲温度,T为温度,Tm为材料熔化温度,Tr为参考温度;m为温度软化系数。

    考虑到TC4钛合金材料的拉压不对称性,引入拉压不对称因子G(σ)修正von Mises屈服面,得到屈服函数为

    ϕ=f(σ)G(σ)=1
    (2)
    f(σ)=3J/σ2s
    (3)
    G(σ)=exp[c(ξ+1)]=1
    (4)

    式中:f(σ)=1 为von Mises屈服面函数;ξ=cos(3θ)=272J3(3J2)3/2为Lode参数,其中θ为Lode角,J2为偏应力第二不变量,J3为偏应力第三不变量;c为不对称系数,可以通过两种简单应力状态求解。本研究中,不对称系数c

    c=2ln(σs3τs)=2lnα,α=σs3τs
    (5)

    式中:τs为纯剪切加载的屈服应力。于是,根据相关联的流动法则,即屈服面函数等于塑性势函数g(σ),得到该本构的增量表达式

    {dσij=De(dεijdεpij)dεpij=dλgσijdλ=g(σtrailij)+g˙εd˙εgσijYijgσpeqHYij=De3σ2sexp[2lnα(ξ+1)](J2σij+2J2lnαξσij)H=23gσijgσij
    (6)

    式中:De为弹性矩阵,dλ为塑性流动因子,εpij为塑性应变,σtrailij为试探应力,σpeq为等效塑性应力。

    Johnson-Cook损伤失效模型为

    εf=[D1+D2exp(D3σ)](1+D4ln˙ε)(1+D5T)
    (7)

    式中:εf为失效应变;D1D5为材料参数;σ=p/σeq,其中p为静水压力,σeq为等效应力。

    数值计算所使用的本构模型参数列于表2[10-11],其中E为弹性模量,ρ为密度,μ为泊松比。

    表  2  TC4钛合金材料参数[10-11]
    Table  2.  Parameters of TC4 titanium alloy[10-11]
    ρ/(g·cm−3)μTm/KA/MPaB/MPanCm
    4.4300.331 878106010900.8840.01171.1
    E/GPa˙ε0/s−1D1D2D3D4D5
    1354 × 10−4−0.0900.2700.4800.0143.870
    下载: 导出CSV 
    | 显示表格

    TC4钛合金平板高速鸟撞的数值计算有限元模型如图7所示。TC4靶板、夹具和M10螺栓均采用C3D8R六面体八节点减缩积分单元模拟。通过建立一般接触,计算鸟体撞击TC4钛合金靶板以及螺栓和靶板之间的接触。夹具通过16颗M10螺栓固定在支架上,在数值计算中对螺栓进行固支约束。鸟体速度分别设置为149、167和180 m/s。

    图  7  鸟撞数值计算模型
    Figure  7.  Numerical model of bird strike

    在TC4钛合金平板上选取6个具有代表意义的观测点,如图8所示,其中观测点S1S2S3沿轴向分布,S4S5S6沿对角线方向分布。

    图  8  观测点布局
    Figure  8.  Distribution of observation points

    图9为鸟撞速度为149 m/s时TC4钛合金平板的等效应力云图。鸟体撞击平板后,鸟体前端受到冲击压缩后解体并呈流体状飞溅,鸟体后端仍保持固体状态。平板受鸟体冲击后产生拉伸波,并向平板四周传播。1.66 ms时鸟体完全解体,鸟体撞击的冲击能量完全耗散,此时TC4钛合金平板的应力、应变和位移达到最大值,随后开始一定程度回弹。

    图  9  149 m/s鸟撞等效应力云图
    Figure  9.  Equivalent stress nephograms of bird impacting with the velocity of 149 m/s

    图10为鸟撞击后TC4钛合金平板变形的数值计算结果和3D-DIC实验结果对比。图10中149 m/s和167 m/s工况下的最大位移(Smax)图像选自未破坏实验,180 m/s工况下的最大位移图像选自平板破坏飞出前(2.00 ms前)。鸟撞过程中,TC4钛合金平板的变形大,对角线方向隆起,隆起处亮度明显增大,使得平板部分区域被遮挡,同时也遮挡了高速摄影机,因此出现部分区域未追踪到变形场的问题。由图10可知,计算得到的最大位移场与实验结果吻合较好。3种工况下数值仿真和实验得到的观测点最大位移如表3所示。

    表  3  TC4钛合金平板鸟撞最大位移
    Table  3.  Maximum displacement of titanium alloy plate impacted by a bird
    Velocity/(m·s−1)MethodMaximum displacement/mm
    S1S2S3S4S5S6
    149Sim.655136645523
    Exp.686038635325
    167Sim.756048766527
    Exp.805947766324
    180Sim.1191016311810354
    Exp.11790531039550
    下载: 导出CSV 
    | 显示表格
    图  10  TC4钛合金平板鸟撞变形结果
    Figure  10.  Deformation of TC4 titanium alloy plate under the bird impact

    图11为计算得到的180 m/s工况下TC4钛合金平板破坏过程中的等效塑性应变云图。从图11可以看出:0.40 ms时,位于轴线上的4颗螺栓附近开始出现裂纹;0.68 ms时,平板与夹具接触处进入塑性阶段;1.04 ms时,平板对角线和夹具接触处开始起裂,并沿着夹具边缘和对角线方向扩展;2.00 ms时,最先起裂的4颗螺栓孔处裂纹贯穿。对比可见,计算得到的螺栓孔处的损伤和破坏形式与实验结果基本一致。

    图  11  180 m/s工况下计算得到的TC4钛合金平板破坏过程
    Figure  11.  Failure process of TC4 titanium alloy plate calculated at 180 m/s

    计算与实验得到的位移-时间曲线对比如图12所示。从图12中可以看出,计算得到的位移变化趋势及大小与实验结果基本吻合,表明本研究使用的Johnson-Cook动态本构和损伤失效模型对于模拟TC4钛合金高速鸟撞冲击问题是比较准确的。

    图  12  位移-时间曲线的计算和实验结果对比
    Figure  12.  Comparison of calculated displacement-time curves with experimental results

    图13对比了6个观测点的应变时程曲线。数值计算得到的6个观测点应变与实验数据的整体吻合度较高。从图13中可以看出,最靠近鸟撞点的观测点S1S4的等效应变在0~0.2 ms内增大,0.2~1.0 ms内保持平稳,1.0~1.4 ms再次增大,1.4 ms后再次保持不变,呈现双台阶模式。其余观测点均未表现出此双台阶模式。观测点S1S2的等效应变出现双台阶的原因在于这两个点位于鸟弹半径范围之内。鸟弹撞击TC4钛合金平板瞬间,应变瞬间增大;0.2~1.0 ms内应力波向边界传递并在边界处反向,此时S1S2区域内材料包裹着鸟弹运动,因此应变出现平台段;1.0 ms时,边界反射的应力波再次到达S1S2区域,使得应变再次增大。

    图  13  应变-时间曲线的计算与实验结果对比
    Figure  13.  Comparison of calculated strain-time curves with experimental results

    通过3D-DIC实验和数值计算方法,研究了1.8 kg鸟体高速撞击1.6 mm厚TC4钛合金平板的动态响应和损伤破坏,得到了较精确、有效的有限元模型,并得到如下结论。

    (1)1.6 mm厚的TC4钛合金在1.8 kg鸟体高速撞击下的临界破坏速度为167 m/s。撞击过程中平板内部未破坏,而螺栓和夹具处发生剪切破坏。

    (2)3D-DIC测试技术能够比较准确地测定鸟撞冲击过程中TC4钛合金平板的变形场。高速冲击过程中平板的变形较大,易出现光线遮挡和反光,需要设置补充高速摄影机。

    (3)实验表明,鸟撞冲击后TC4钛合金平板破坏主要为螺栓等边界处的剪切破坏。将修正的von Mises屈服准则引入Johnson-Cook动态本构和损伤模型中,在本构中同时考虑拉伸和剪切两种应力状态。该本构能够准确地模拟鸟撞平板问题。

  • 图  实验装置示意图

    Figure  1.  Schematic diagram of the experimental device

    图  T0=400 K、p0=0.2 MPa、Ф=1.0时的pmax、(dp/dt)maxtc

    Figure  2.  Values of pmax, (dp/dt)max, and tc obtained at T0=400 K, p0=0.2 MPa, and Φ=1.0

    图  T0=450 K、p0=0.4 MPa时不同Φ下的C2H5OH/CH4/H2火焰图像

    Figure  3.  C2H5OH/CH4/H2 flame images at different Φ when T0=450 K and p0=0.4 MPa

    图  T0=450 K时不同p0Φ下的C2H5OH/CH4/H2火焰图像

    Figure  4.  C2H5OH/CH4/H2 flame images at different p0 and Φ when T0=450 K

    图  p0=0.4 MPa时不同T0Φ的C2H5OH/CH4/H2火焰图像

    Figure  5.  C2H5OH/CH4/H2 flame images at different T0 and Φ when p0=0.4 MPa

    图  当量比、初始压力和温度对爆炸压力的影响

    Figure  6.  Influence of equivalence ratio, initial pressure and temperature on explosion pressure

    图  不同初始工况下C2H5OH/CH4/H2预混燃料的峰值爆炸压力

    Figure  7.  Peak explosion pressure of C2H5OH/CH4/H2 premixed fuel under different initial conditions

    图  峰值爆炸压力随初始压力的变化规律

    Figure  8.  Relationship between peak explosion pressure and initial pressure

    图  峰值爆炸压力随初始温度的变化规律

    Figure  9.  Relationship between peak explosion pressure and initial temperature

    图  10  T0 = 450 K、p0=0.4 MPa时不同当量比下爆炸压力上升率的变化曲线

    Figure  10.  Time curves of explosion pressure rise rate under different equivalence ratio at T0=450 K, p0=0.4 MPa

    图  11  T0=450 K、Ф=1.2时不同初始压力下的爆炸压力上升率的变化曲线

    Figure  11.  Time curves of explosion pressure rise rate under different initial pressures when T0=450 K and Ф=1.2

    图  12  p0=0.4 MPa、Ф=1.2时不同初始温度下的爆炸压力上升率变化曲线

    Figure  12.  Time curves of explosion pressure rise rate under different initial temperatures when p0=0.4 MPa and Ф=1.2

    图  13  峰值爆炸压力上升率汇总

    Figure  13.  Summary of peak explosion pressure rise rate

    图  14  爆燃指数汇总

    Figure  14.  Summary of deflagration index

    图  15  爆炸时间与初始温度、初始压力的关系

    Figure  15.  Relationship between explosion time, initial temperature and initial pressure

    图  16  爆炸时间随初始压力的变化规律

    Figure  16.  Explosion time varies with the initial pressure

    图  17  以往研究中H2/CH4预混燃料层流燃烧速度的对比(H2与CH4体积分数之比为1∶4)

    Figure  17.  Comparison of laminar burning velocity of H2/CH4 premixed fuels from previous studies (The ratio of H2 and CH4 volume fraction is 1∶4)

    图  18  C2H5OH/CH4/H2预混燃料实验得到的层流燃烧速度与整合机理模拟数据的对比

    Figure  18.  Comparison of experimental laminar burning velocity and integration mechanism simulation data of C2H5OH/CH4/H2 premixed fuel

    图  19  不同当量比下的基元反应敏感性数据

    Figure  19.  Reaction sensitivity data of primitives at different equivalence ratios

    图  20  不同初始压力下的基元反应敏感性数据

    Figure  20.  Reaction sensitivity data of primitives at different initial pressures

    图  21  不同初始温度下的基元反应敏感性数据

    Figure  21.  Reaction sensitivity data of the primitives at different initial temperatures

    图  22  不同初始压力下C2H5OH/CH4/H2的关键反应路径分析

    Figure  22.  Analysis of C2H5OH/CH4/H2 critical reaction pathways under different initial pressures

    表  1  实验的初始条件

    Table  1.   Initial conditions of the experiment

    Φ p0/MPa T0/K φC2H5OH/% φCH4/% φH2/%
    0.8−1.4 0.1, 0.2, 0.4 370, 400, 450 50 40 10
    下载: 导出CSV

    表  2  T0=450 K下峰值爆炸压力与初始压力的相关性系数

    Table  2.   Correlation coefficient between peak explosion pressure and initial pressure at T0=450 K

    Φ a b
    0.8 −0.039 30 4.716 11
    0.9 −0.024 41 5.268 32
    1.0 −0.006 71 5.439 43
    1.1 −0.020 74 5.788 41
    1.2 −0.009 14 5.997 85
    下载: 导出CSV

    表  3  p0=0.4 MPa下峰值爆炸压力与初始温度的相关性系数

    Table  3.   Correlation coefficient between peak explosion pressure and initial temperature at p0=0.4 MPa

    Φ c d
    0.8 3.409 94 −0.003 45
    0.9 3.588 53 −0.003 33
    1.0 4.428 85 −0.004 98
    1.1 4.585 72 −0.005 12
    1.2 4.551 11 −0.004 68
    下载: 导出CSV
  • [1] LI B L, HANEKLAUS N. The role of clean energy, fossil fuel consumption and trade openness for carbon neutrality in China [J]. Energy Reports, 2022, 8(Suppl 4): 1090–1098.
    [2] 刘尚, 范钦灏, 王巍, 等. 乙醇汽油点燃压燃模式颗粒物排放特性试验 [J]. 内燃机学报, 2023, 41(1): 33–41.

    LIU S, FAN Q H, WANG W, et al. Experiment on particulate number emissions of spark ignition to compression ignition combustion mode for ethanol gasoline [J]. Transactions of Csice, 2023, 41(1): 33–41.
    [3] 刘旭, 钟汶君, 姜鹏, 等. 乙醇汽油/加氢催化生物柴油双燃料发动机着火燃烧及碳烟生成特性研究 [J]. 工程热物理学报, 2022, 43(8): 2143–2151.

    LIU X, ZHONG W J, JIANG P, et al. Study on ignition combustion and soot formation characteristics of ethanol gasoline-hydrogenated catalytic biodiesel dual fuel engine [J]. Journal of Engineering Thermophysics, 2022, 43(8): 2143–2151.
    [4] 纪常伟, 辛固, 汪硕峰, 等. 零碳及碳中和燃料内燃机应用进展 [J]. 北京工业大学学报, 2022, 48(3): 273–291. doi: 10.11936/bjutxb2021100007

    JI C W, XIN G, WANG S F, et al. Application progress of zero carbon and carbon-neutral fuel internal combustion engines [J]. Journal of Beijing University of Technology, 2022, 48(3): 273–291. doi: 10.11936/bjutxb2021100007
    [5] WANG X R, ZHANG Y, LI T, et al. Investigation of cellularization characteristics of hydrogen-methane-ethanol expanding spherical flame at elevated pressures [J]. Combustion and Flame, 2023, 255: 112866. doi: 10.1016/j.combustflame.2023.112866
    [6] WANG X R, YAN C Z, ZHANG Y, et al. Laminar and kinetic burning characteristics of ethanol/methane/hydrogen fuel: experimental and numerical analysis [J]. Renewable Energy, 2024, 227: 120493. doi: 10.1016/j.renene.2024.120493
    [7] LI T, WANG X R, MA Y, et al. Investigation on hydrogen/ethanol intrinsic flame instability [J]. Combustion and Flame, 2022, 241: 112064. doi: 10.1016/j.combustflame.2022.112064
    [8] 张衍, 张嘉玮, 王筱蓉. 高压下氢气-乙醇球形膨胀火焰的层流燃烧速度和火焰不稳定性研究 [J]. 新能源进展, 2023, 11(1): 69–75. doi: 10.3969/j.issn.2095-560X.2023.01.010

    ZHANG Y, ZHANG J W, WANG X R. Investigation of laminar combustion velocity and flame instability in hydrogen-ethanol spherical expansion flames under high pressures [J]. Advances in New and Renewable Energy, 2023, 11(1): 69–75. doi: 10.3969/j.issn.2095-560X.2023.01.010
    [9] BAO Y G, LI X L, XU C S, et al. Experimental and numerical study on morphological characteristics and intrinsic instability of premixed hydrogen/ethanol flames [J]. Fuel, 2024, 371: 132019. doi: 10.1016/j.fuel.2024.132019
    [10] LI Y C, BI M S, LI B, et al. Effects of hydrogen and initial pressure on flame characteristics and explosion pressure of methane/hydrogen fuels [J]. Fuel, 2018, 233: 269–282. doi: 10.1016/j.fuel.2018.06.042
    [11] MOHAMMAD A, JUHANY K A. Laminar burning velocity and flame structure of DME/methane+air mixtures at elevated temperatures [J]. Fuel, 2019, 245: 105–114. doi: 10.1016/j.fuel.2019.02.085
    [12] OPPONG F, ZHONGYANG L, LI X L, et al. Investigations on explosion characteristics of ethyl acetate [J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104409. doi: 10.1016/j.jlp.2021.104409
    [13] CHENG J, ZHANG B. Experimental study on the explosion characteristics of ammonia-hydrogen-air mixtures [J]. Fuel, 2024, 363: 131046. doi: 10.1016/j.fuel.2024.131046
    [14] MITU M, BRANDES E. Influence of pressure, temperature and vessel volume on explosion characteristics of ethanol/air mixtures in closed spherical vessels [J]. Fuel, 2017, 203: 460–468. doi: 10.1016/j.fuel.2017.04.124
    [15] CUI G, WANG S, LIU J G, et al. Explosion characteristics of a methane/air mixture at low initial temperatures [J]. Fuel, 2018, 234: 886–893. doi: 10.1016/j.fuel.2018.07.139
    [16] LIU C, TANG K C, HUANG C Y, et al. Effect of initial pressure on the critical characteristics and overpressure of hydrogen-air premixed gas combustion and explosion [J]. International Journal of Hydrogen Energy, 2024, 49: 311–322. doi: 10.1016/j.ijhydene.2023.07.266
    [17] SHEN X B, XIU G, WU S Z. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition [J]. Applied Thermal Engineering, 2017, 120: 741–747. doi: 10.1016/j.applthermaleng.2017.04.040
    [18] 马秋菊, 邵俊程, 王众山, 等. 氢气比例和点火能量对CH4-H2混合气体爆炸强度影响的实验研究 [J]. 高压物理学报, 2020, 34(1): 015201. doi: 10.11858/gywlxb.20190803

    MA Q J, SHAO J C, WANG Z S, et al. Experimental study of the hydrogen proportion and ignition energy effects on the CH4-H2 mixture explosion intensity [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015201. doi: 10.11858/gywlxb.20190803
    [19] 张嘉玮, 张衍, 姜根柱, 等. 乙醇-氢气-空气预混燃气爆炸特性的研究 [J]. 新能源进展, 2023, 11(2): 189–196. doi: 10.3969/j.issn.2095-560X.2023.02.012

    ZHANG J W, ZHANG Y, JIANG G Z, et al. Explosion characteristics of ethanol-hydrogen-air premixed gas [J]. Advances in New and Renewable Energy, 2023, 11(2): 189–196. doi: 10.3969/j.issn.2095-560X.2023.02.012
    [20] LIU G L, WANG J, ZHENG L G, et al. Effect of hydrogen addition on explosion characteristics of premixed methane/air mixture under different equivalence ratio distributions [J]. Energy, 2023, 276: 127607. doi: 10.1016/j.energy.2023.127607
    [21] LIU L, LUO Z M, SU B, et al. Study on the explosion characteristics and flame propagation of hydrogen-methane-air mixtures in a closed vessel [J]. Journal of Loss Prevention in the Process Industries, 2024, 87: 105224. doi: 10.1016/j.jlp.2023.105224
    [22] LIU J J, YU D Y, LI P, et al. Characteristics of explosion hazards in methane-air mixtures diluted by hydrogen [J]. Energies, 2023, 16(18): 6416. doi: 10.3390/en16186416
    [23] CHEN Z M, WANG L, ZENG K. A comparative study on the combustion and emissions of dual-fuel engine fueled with natural gas/methanol, natural gas/ethanol, and natural gas/n-butanol [J]. Energy Conversion and Management, 2019, 192: 11–19. doi: 10.1016/j.enconman.2019.04.011
    [24] 刘晓龙. 掺氢内燃机燃烧特性及整车燃油经济性的数值模拟研究 [D]. 北京: 北京工业大学, 2015.

    LIU X L. Numerical investigation on combustion characteristics and vehicle fuel economy performance of hydrogen-enriched engines [D]. Beijing: Beijing University of Technology, 2015.
    [25] 吕晓辉. 乙醇掺氢燃料预混层流燃烧特性的研究 [D]. 武汉: 武汉理工大学, 2011.

    LYU X H. Study on premixed laminar combustion of hydrogen blended ethanol fuels [D]. Wuhan: Wuhan University of Technology, 2011.
    [26] 马熹群. 汽油掺氢层流预混火焰燃烧特性研究[D]. 北京: 北京理工大学, 2016.

    MA X Q. Study of burning property of gasoline surrogate and hydrogen laminar premixed flame [D]. Beijing: Beijing Institute of Technology, 2016.
    [27] XU C S, WANG Q Y, SONG Y, et al. Explosion characteristics of n-decane/hydrogen/air mixtures [J]. International Journal of Hydrogen Energy, 2022, 47(91): 38837–38848. doi: 10.1016/j.ijhydene.2022.09.048
    [28] LI H Z, XIAO H H. Experimental study on the explosion characteristics of NH3/DME/air mixtures [J]. Fuel, 2023, 352: 129069. doi: 10.1016/j.fuel.2023.129069
    [29] OPPONG F, LI X L, XU C S, et al. Investigations on methyl pentanoate-air mixtures confined explosion and cellularity [J]. Fuel, 2024, 358: 130137. doi: 10.1016/j.fuel.2023.130137
    [30] OPPONG F, XU C S, LI X L, et al. Laminar flame characteristics of 2-ethylfuran/air mixtures: experimental and kinetic modelling investigations [J]. Fuel, 2022, 307: 121785. doi: 10.1016/j.fuel.2021.121785
    [31] HU E J, TIAN H Z, ZHANG X Y, et al. Explosion characteristics of n-butanol/iso-octane-air mixtures [J]. Fuel, 2017, 188: 90–97. doi: 10.1016/j.fuel.2016.10.002
    [32] XU C S, WANG H Y, LI X L, et al. Explosion characteristics of a pyrolysis biofuel derived from rice husk [J]. Journal of Hazardous Materials, 2019, 369: 324–333. doi: 10.1016/j.jhazmat.2019.01.101
    [33] SAEED K. Determination of the explosion characteristics of methanol-air mixture in a constant volume vessel [J]. Fuel, 2017, 210: 729–737. doi: 10.1016/j.fuel.2017.09.004
    [34] MITTAL G, BURKE S M, DAVIES V A, et al. Autoignition of ethanol in a rapid compression machine [J]. Combustion and Flame, 2014, 161(5): 1164–1171. doi: 10.1016/j.combustflame.2013.11.005
    [35] OPPONG F, XU C S, ZHONGYANG L, et al. Evaluation of explosion characteristics of 2-methylfuran/air mixture [J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103954. doi: 10.1016/j.jlp.2019.103954
    [36] XIANG L K, JIANG H T, REN F, et al. Numerical study of the physical and chemical effects of hydrogen addition on laminar premixed combustion characteristics of methane and ethane [J]. International Journal of Hydrogen Energy, 2020, 45(39): 20501–20514. doi: 10.1016/j.ijhydene.2019.11.040
    [37] DUAN X B, LI Y Y, LIU Y Q, et al. Dilution gas and hydrogen enrichment on the laminar flame speed and flame structure of the methane/air mixture [J]. Fuel, 2020, 281: 118794. doi: 10.1016/j.fuel.2020.118794
    [38] ECKART S, PIZZUTI L, FRITSCHE C, et al. Experimental study and proposed power correlation for laminar burning velocity of hydrogen-diluted methane with respect to pressure and temperature variation [J]. International Journal of Hydrogen Energy, 2022, 47(9): 6334–6348. doi: 10.1016/j.ijhydene.2021.11.243
    [39] BERWAL P, SOLAGAR S, KUMAR S. Experimental investigations on laminar burning velocity variation of CH4+H2+air mixtures at elevated temperatures [J]. International Journal of Hydrogen Energy, 2022, 47(37): 16686–16697. doi: 10.1016/j.ijhydene.2022.03.155
    [40] ARAVINDAN M, PRAVEEN KUMAR G, ARULANANDAM M K, et al. Multi-objective optimization and analysis of chemical kinetics properties: exploring the impact of different hydrogen blending ratios on LPG and methane-air mixtures [J]. Energy Conversion and Management: X, 2024, 22: 100532. doi: 10.1016/j.ecmx.2024.100532
    [41] MORSY M E, YANG J F. The instability of laminar methane/hydrogen/air flames: correlation between small and large-scale explosions [J]. International Journal of Hydrogen Energy, 2022, 47(69): 29959–29970. doi: 10.1016/j.ijhydene.2022.06.289
    [42] 李祥春, 聂百胜, 杨春丽, 等. 封闭空间内瓦斯浓度对瓦斯爆炸反应动力学特性的影响 [J]. 高压物理学报, 2017, 31(2): 135–147. doi: 10.11858/gywlxb.2017.02.005

    LI X C, NIE B S, YANG C L, et al. Effect of gas concentration on kinetic characteristics of gas explosion in confined space [J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 135–147. doi: 10.11858/gywlxb.2017.02.005
    [43] 杨春丽, 刘艳, 胡玢, 等. 氮气和水蒸气对瓦斯爆炸基元反应的影响及抑爆机理分析 [J]. 高压物理学报, 2017, 31(3): 301–308. doi: 10.11858/gywlxb.2017.03.012

    YANG C L, LIU Y, HU F, et al. Effect of nitrogen and water vapor on methane-air mixture explosion elementary reaction and suppression mechanism [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 301–308. doi: 10.11858/gywlxb.2017.03.012
    [44] 夏煜, 程扬帆, 胡芳芳, 等. 典型固体抑爆剂对乙炔-空气的抑爆特性 [J]. 高压物理学报, 2022, 36(6): 065201. doi: 10.11858/gywlxb.20220580

    XIA Y, CHENG Y F, HU F F, et al. Inhibition characteristics of typical solid explosion suppressors on acetylene-air explosion [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 065201. doi: 10.11858/gywlxb.20220580
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  68
  • PDF下载量:  18
出版历程
  • 收稿日期:  2024-05-27
  • 修回日期:  2024-06-24
  • 录用日期:  2024-08-29
  • 网络出版日期:  2024-10-10
  • 刊出日期:  2024-01-05

目录

/

返回文章
返回