Protective Properties of Metal/CFRP Composite Laminates Subjected to Underwater Contact Explosion
-
摘要: 碳纤维增强复合材料(carbon fiber-reinforced polymer,CFRP)具有优异的抗爆性能,逐渐被应用于舰船结构的抗爆抗冲击设计中。为了探究水下接触爆炸作用下金属/CFRP复合层合板的防护性能,基于任意拉格朗日-欧拉方法,建立了水下接触爆炸对金属/CFRP复合层合板毁伤的流固耦合数值模型,分析了层合板在承受水下爆炸载荷后的变形和吸能特点,比较了不同铺层方式对结构抗爆性能的影响,结果显示,钢/CFRP/钢结构的抗爆性能较优。针对钢/CFRP/钢结构,探究了CFRP的厚度对吸能效果的影响,并进行了厚度优化,得到了较优的厚度比,即1.1∶4.0∶1.1。Abstract: Carbon fiber-reinforced polymer (CFRP) with excellent blast-resistant performances is gradually applied in the anti-shock design of warships. In order to investigate the protective performance of metal/CFRP composite laminates subjected to underwater contact explosion, a fluid-structure coupling numerical model was established based on arbitrary Lagrangian-Eulerian (ALE) method. The deformation and energy absorption characteristics of laminates were analyzed, and the effect of layup types on the blast-resistant performance was compared. The results show that steel-CFRP-steel structure had better blast-resistant performance. On the basis of this structure, the optimal thickness ratio was given as 1.1∶4.0∶1.1.
-
Density/(g·cm−3) A/GPa B/GPa R1 R2 ω D/(m·s−1) e/(GJ·m−3) pCJ/GPa 1.69 850 18 4.6 1.3 0.38 8310 10 30.15 Density/(kg·m−3) C0 C1 C2 C3 C4 C5 e/(J·cm−3) 1.293 0 0 0 0 0.4 0.4 0.25 Density/(g·cm−3) c/(m·s−1) S1 S2 S3 γ0 v0 1 1647 1.92 −0.096 0 0.35 1 Density/(g·cm−3) E/GPa μ σ0/MPa ET/MPa C/s−1 P 7.83 207 0.3 235 375 40.4 5 Density/(g·cm−3) Ea/GPa Eb/GPa Gab/GPa Gbc/GPa Gca/GPa 1.53 53.81 53.81 5.8 2.9 2.9 μ Xt/MPa Xc/MPa Yt/MPa Yc/MPa 0.04 680 741 800 728 Method rmax/m tb1/ms Tb/ms Experiment 0.50 50 94 Simulation 0.54 45 92 Relative error/% 8 −10 −2.13 Density/(g·cm−3) A/GPa B/GPa R1 R2 ω D/(m·s−1) E/(GJ·m−3) pCJ/GPa 1.63 371 7.43 4.15 0.95 0.3 6930 7 27 Density/(g·cm−3) E/GPa μ σ0/MPa ET/MPa 7.86 210 0.3 300 250 表 9 工况 1~工况5中靶板的设置
Table 9. Target plates setup in Case 1−Case 5
Case Target plate (thickness) $ {\rho }_{\mathrm{t}} $/(g·cm−2) 1 Q235 steel (3.0 mm) 2.349 2 CFRP (5.0 mm, face plate)/Q235 steel (2.0 mm) 2.331 3 CFRP (5.0 mm, back plate)/Q235 steel (2.0 mm) 2.331 4 Q235 steel (1.0 mm)/CFRP (5.0 mm)/Q235 steel (1.0 mm) 2.331 5 CFRP (2.5 mm)/Q235 steel (2.0 mm)/CFRP (2.5 mm) 2.331 表 10 工况1~工况5中靶板的总内能
Table 10. Total internal energy of target plate in Case 1−Case 5
Case Target plate (thickness) Etot/J $ \gamma $ 1 Q235 steel (3.0 mm) 5691.3 1 2 CFRP (5.0 mm, face plate)/Q235 steel (2.0 mm) 5287.4 0.929 3 CFRP (5.0 mm, back plate)/Q235 steel (2.0 mm) 5985.5 1.052 4 Q235 steel (1.0 mm)/CFRP (5.0 mm)/Q235 steel (1.0 mm) 6022.4 1.058 5 CFRP (2.5 mm)/Q235 steel (2.0 mm)/CFRP (2.5 mm) 4917.9 0.864 表 11 工况6~工况10中的靶板设置
Table 11. Target plates setup in Case 6−Case 10
Case Target plate (thickness) $ {\rho }_{\rm t} $/(g·cm−2) 6 Q235 steel (1.3 mm)/CFRP (2.0 mm)/Q235 steel (1.3 mm) 2.342 7 Q235 steel (1.1 mm)/CFRP (4.0 mm)/Q235 steel (1.1 mm) 2.335 8 Q235 steel (0.9 mm)/CFRP (6.0 mm)/Q235 steel (0.9 mm) 2.327 9 Q235 steel (0.7 mm)/CFRP (8.0 mm)/Q235 steel (0.7 mm) 2.320 10 Q235 steel (0.5 mm)/CFRP (10.0 mm)/Q235 steel (0.5 mm) 2.313 表 12 工况6~工况10中靶板的总内能
Table 12. Total internal energy of target plate in Case 6−Case 10
Case Target plate (thickness) Etot/J $ \gamma $ 6 Q235 steel (1.3 mm)/CFRP (2.0 mm)/Q235 steel (1.3 mm) 6285.6 1.104 7 Q235 steel (1.1 mm)/CFRP (4.0 mm)/Q235 steel (1.1 mm) 6336.2 1.113 8 Q235 steel (0.9 mm)/CFRP (6.0 mm)/Q235 steel (0.9 mm) 5599.5 0.984 9 Q235 steel (0.7 mm)/CFRP (8.0 mm)/Q235 steel (0.7 mm) 4841.1 0.851 10 Q235 steel (0.5 mm)/CFRP (10.0 mm)/Q235 steel (0.5 mm) 3697.1 0.650 -
[1] LIU Y L, ZHANG A M, TIAN Z L, et al. Investigation of free-field underwater explosion with Eulerian finite element method [J]. Ocean Engineering, 2018, 166: 182–190. doi: 10.1016/j.oceaneng.2018.08.001 [2] 朱锡. 水下爆炸简介 [J]. 爆炸与冲击, 2020, 40(11): 111400.ZHU X. An introduction to underwater explosion [J]. Explosion and Shock Waves, 2020, 40(11): 111400. [3] 金键, 朱锡, 侯海量, 等. 水下爆炸载荷下舰船响应与毁伤研究综述 [J]. 水下无人系统学报, 2017, 25(6): 396–409. doi: 10.11993/j.issn.2096-3920.2017.05.002JIN J, ZHU X, HOU H L, et al. Review of dynamic response and damage mechanism of ship structure subjected to underwater explosion load [J]. Journal of Unmanned Undersea Systems, 2017, 25(6): 396–409. doi: 10.11993/j.issn.2096-3920.2017.05.002 [4] 彭福明, 郝际平, 岳清瑞, 等. 碳纤维增强复合材料(CFRP)加固修复损伤钢结构 [J]. 工业建筑, 2003, 33(9): 7–10. doi: 10.3321/j.issn:1000-8993.2003.09.003PENG F M, HAO J P, YUE Q R, et al. CFRP for strengthening and repairing of damaged steel structure [J]. Industrial Construction, 2003, 33(9): 7–10. doi: 10.3321/j.issn:1000-8993.2003.09.003 [5] 苏小萍. 碳纤维增强复合材料的应用现状 [J]. 高科技纤维与应用, 2004, 29(5): 34–36, 39. doi: 10.3969/j.issn.1007-9815.2004.05.006SU X P. Application of carbon fiber reinforced composite [J]. Hi-Tech Fiber & Application, 2004, 29(5): 34–36, 39. doi: 10.3969/j.issn.1007-9815.2004.05.006 [6] 杜希岩, 李炜. 纤维增强复合材料在体育器材上的应用 [J]. 纤维复合材料, 2007, 24(1): 14–17. doi: 10.3969/j.issn.1003-6423.2007.01.004DU X Y, LI W. Application of fiber reinforced composites for sports instruments [J]. Fiber Composites, 2007, 24(1): 14–17. doi: 10.3969/j.issn.1003-6423.2007.01.004 [7] 李威, 郭权锋. 碳纤维复合材料在航天领域的应用 [J]. 中国光学, 2011, 4(3): 201–212. doi: 10.3969/j.issn.2095-1531.2011.03.001LI W, GUO Q F. Application of carbon fiber composites to cosmonautic fields [J]. Chinese Optics, 2011, 4(3): 201–212. doi: 10.3969/j.issn.2095-1531.2011.03.001 [8] 钱伯章. 船用碳纤维复合材料的发展趋势 [J]. 合成纤维, 2020, 49(7): 57–58. doi: 10.16090/j.cnki.hcxw.2020.07.031QIAN B Z. Development trend of marine carbon fiber composites [J]. Synthetic Fiber in China, 2020, 49(7): 57–58. doi: 10.16090/j.cnki.hcxw.2020.07.031 [9] 于海宁, 王新利, 薛德帅. 先进复合材料在舰船领域的应用及展望 [J]. 合成纤维, 2023, 52(7): 52–55. doi: 10.16090/j.cnki.hcxw.2023.07.009YU H N, WANG X L, XUE D S. Application and prospect of advanced composites in ship field [J]. Synthetic Fiber in China, 2023, 52(7): 52–55. doi: 10.16090/j.cnki.hcxw.2023.07.009 [10] LANGDON G S, CANTWELL W J, NURICK G N. Localised blast loading of fibre-metal laminates with a polyamide matrix [J]. Composites Part B: Engineering, 2007, 38(7/8): 902–913. doi: 10.1016/j.compositesb.2006.11.005 [11] LANGDON G S, NURICK G N, LEMANSKI S L, et al. Failure characterisation of blast-loaded fibre-metal laminate panels based on aluminium and glass-fibre reinforced polypropylene [J]. Composites Science and Technology, 2007, 67(7/8): 1385–1405. doi: 10.1016/j.compscitech.2006.09.010 [12] LANGDON G S, LEMANSKI S L, NURICK G N, et al. Behaviour of fibre-metal laminates subjected to localised blast loading: part Ⅰ. experimental observations [J]. International Journal of Impact Engineering, 2007, 34(7): 1202–1222. doi: 10.1016/j.ijimpeng.2006.05.008 [13] KARAGIOZOVA D, LANGDON G S, NURICK G N, et al. Simulation of the response of fibre-metal laminates to localised blast loading [J]. International Journal of Impact Engineering, 2010, 37(6): 766–782. doi: 10.1016/j.ijimpeng.2009.04.001 [14] SCHIFFER A, TAGARIELLI V L. The dynamic response of composite plates to underwater blast: theoretical and numerical modelling [J]. International Journal of Impact Engineering, 2014, 70: 1–13. doi: 10.1016/j.ijimpeng.2014.03.002 [15] 胡慧, 王薇. 船用碳纤维复合材料层合板的水下抗爆性能研究 [J]. 舰船科学技术, 2023, 45(23): 74–77. doi: 10.3404/j.issn.1672-7649.2023.23.013HU H, WANG W. Research on underwater explosion resistance of carbon fiber composite laminated plates for ships [J]. Ship Science and Technology, 2023, 45(23): 74–77. doi: 10.3404/j.issn.1672-7649.2023.23.013 [16] 刘奇奇, 刘亮涛, 王金相, 等. 冲击波及气泡载荷联合作用下变截面加筋圆柱壳动态响应 [J]. 水下无人系统学报, 2022, 30(3): 321–331. doi: 10.11993/j.issn.2096-3920.2022.03.007LIU Q Q, LIU L T, WANG J X, et al. Dynamic response of a stiffened cylindrical shell with a variable cross section subjected to shock wave and bubble load [J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 321–331. doi: 10.11993/j.issn.2096-3920.2022.03.007 [17] ZAMYSHLYAEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion [R]. Naval Training Research Laboratory, 1973: 470. [18] PLESSET M S. The dynamics of cavitation bubbles [J]. Journal of Applied Mechanics, 1949, 16(3): 277–282. doi: 10.1115/1.4009975 [19] GILMORE F R. The collapse and growth of a spherical bubble in a viscous compressible liquid [R]. California Institute of Technology, 1952. [20] 田影. 不同边界条件下近场水下爆炸载荷特性研究 [D]. 大连: 大连理工大学, 2022.TIAN Y. Study on characteristics of near-field underwater explosion loads under different boundary conditions [D]. Dalian: Dalian University of Technology, 2022. [21] 刘武, 夏治园, 马刘博, 等. 预控破片战斗部爆炸飞散数值模拟 [J]. 火工品, 2020(4): 48–51. doi: 10.3969/j.issn.1003-1480.2020.04.013LIU W, XIA Z Y, MA L B, et al. Numerical simulation of explosion dispersion in pre-controlled fragment warhead [J]. Initiators & Pyrotechnics, 2020(4): 48–51. doi: 10.3969/j.issn.1003-1480.2020.04.013 [22] 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析 [M]. 北京: 清华大学出版社, 2005.SHI D Y, LI Y C, ZHANG S M. Explicit dynamic analysis based on ANSYS/LS-DYNA 8.1 [M]. Beijing: Tsinghua University Press, 2005. [23] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册 [M]. 北京: 机械工业出版社, 2020.XIN C L, XUE Z Q, TU J, et al. Manual of common material parameters for finite element analysis [M]. Beijing: China Machine Press, 2020. [24] 何兆亨, 刘颖, 李能华, 等. 基于LS-DYNA的CFRP方管轴向压溃仿真方法研究 [J]. 玻璃钢/复合材料, 2019(9): 20–25. doi: 10.3969/j.issn.1003-0999.2019.09.003HE Z H, LIU Y, LI N H, et al. Simulation methods for axial crushing CFRP tubes in LS-DYNA [J]. Composites Science and Engineering, 2019(9): 20–25. doi: 10.3969/j.issn.1003-0999.2019.09.003 [25] KLASEBOER E, HUNG K C, WANG C, et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure [J]. Journal of Fluid Mechanics, 2005, 537: 387–413. doi: 10.1017/S0022112005005306 [26] RAMAJEYATHILAGAM K, VENDHAN C P. Deformation and rupture of thin rectangular plates subjected to underwater shock [J]. International Journal of Impact Engineering, 2004, 30(6): 699–719. doi: 10.1016/j.ijimpeng.2003.01.001 [27] 李芝绒, 张玉磊, 袁建飞, 等. 内部爆炸薄圆板的变形及有效载荷 [J]. 爆炸与冲击, 2020, 40(11): 113101.LI Z R, ZHANG Y L, YUAN J F, et al. Deformation and payload of thin circular plates subjected to internal explosion [J]. Explosion and Shock Waves, 2020, 40(11): 113101. [28] DEMIR T, ÜBEYLI M, YILDIRIM R O. Investigation on the ballistic impact behavior of various alloys against 7.62 mm armor piercing projectile [J]. Materials and Design, 2008, 29(10): 2009–2016.