侵彻双层靶板过程中PBX装药的宏-细观损伤数值模拟研究

张晓微 赵河明 郑晓波 张巧 王志军 肖有才

姚永永, 苏步云, 肖革胜, 许海涛, 树学峰. 内凹负泊松比蜂窝结构的面内双轴冲击响应[J]. 高压物理学报, 2021, 35(2): 024201. doi: 10.11858/gywlxb.20200610
引用本文: 张晓微, 赵河明, 郑晓波, 张巧, 王志军, 肖有才. 侵彻双层靶板过程中PBX装药的宏-细观损伤数值模拟研究[J]. 高压物理学报, 2024, 38(6): 064201. doi: 10.11858/gywlxb.20240795
YAO Yongyong, SU Buyun, XIAO Gesheng, XU Haitao, SHU Xuefeng. In-Plane Biaxial Impact Response of Re-Entrant Auxetic Honeycomb[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024201. doi: 10.11858/gywlxb.20200610
Citation: ZHANG Xiaowei, ZHAO Heming, ZHENG Xiaobo, ZHANG Qiao, WANG Zhijun, XIAO Youcai. Numerical Simulation Study on Macro-Microscopic Damage of PBX Charge during Penetration of Double-Layer Targets[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064201. doi: 10.11858/gywlxb.20240795

侵彻双层靶板过程中PBX装药的宏-细观损伤数值模拟研究

doi: 10.11858/gywlxb.20240795
基金项目: 国家自然科学基金(11802273,12372368);山西省基础研究面上项目(202303021211142);国防科工局基础科研重点项目(JCKY2017207B055)
详细信息
    作者简介:

    张晓微(1986-),女,博士研究生,主要从事弹药安全研究. E-mail:hgdzhangxiaowei@163.com

    通讯作者:

    肖有才(1988-),男,博士,副教授,主要从事材料动态力学、损伤力学、爆炸与冲击相关问题研究. E-mail:xiaoyoucai@nuc.edu.cn

  • 中图分类号: O381; O521.9

Numerical Simulation Study on Macro-Microscopic Damage of PBX Charge during Penetration of Double-Layer Targets

  • 摘要: 针对高速战斗部侵彻双层目标时装药的损伤问题,基于内聚力模型开展了PBX装药战斗部侵彻双层靶板的数值模拟研究。采用内聚力模型计算装药损伤的出现与演化,分析了侵彻速度与损伤发生的关系,通过损伤比对侵彻结束后PBX装药的损伤进行了量化,建立了PBX装药细观损伤仿真模型,研究了侵彻双层靶板过程中PBX装药细观损伤机制。结果表明:当弹体垂直侵彻双层靶板时,在压-拉反复作用下,装药尾部形成了垂直于加载方向的贯穿裂纹,且装药的损伤程度随着侵彻速度的增大而增大;在侵彻双层靶板过程中,PBX装药的主要损伤模式是界面脱粘,微裂纹最先出现在颗粒边角处,并且逐渐增多,最终界面微裂纹失稳扩展并汇聚为连续的主裂纹。

     

  • 负泊松比蜂窝结构又称拉胀结构,因具有许多常规结构不具备的力学特性[1],而成为研究热点。蜂窝材料具有较高的相对刚度、强度和高效的能量吸收能力,在抗剪切、抗屈曲、提高硬度以及抗疲劳等方面拥有独特的优越性[2-3],在一些应用领域中发挥着关键作用,如汽车、航空、军事、医学领域[4]。多孔结构的力学性能主要取决于细观上的拓扑结构。近年来,通过改变细观结构,人们发现负泊松比结构具有很多特殊优势,因而被广泛应用[5]

    马芳武等[6]研究了一种内凹三角形负泊松比结构,通过改变内凹角度,分析了冲击端和固定端的平台应力和能量吸收能力,并与内凹六边形进行了对比。Zhang等[7]分析了内凹六边形蜂窝在两个正交方向上的后继屈服拉伸行为,同时考虑结构的塑性影响以及孔壁的非线性行为分析模型,提出了单胞结构的塑性铰变形机制,得到了单胞结构的应力-应变曲线。Li等[8-9]对内凹蜂窝结构进行分级、强化,并将正弦曲线引入内凹蜂窝结构,得到了新的改进模型,进而分析了结构的泊松比和能量吸收变化。邓小林等[10]研究了全参数化的正弦曲线蜂窝结构,以不同振幅、不同厚度建立模型,研究了蜂窝结构在不同冲击速度下的动力响应,发现正弦曲线蜂窝较常规六边形蜂窝有更好的能量吸收效果。崔世堂等[11]利用有限元模拟方法研究了负泊松比蜂窝结构面内冲击动力学特性,发现平台应力和结构的比吸能随冲击速度的增大而增高,随胞元扩展角的增大而降低。陈鹏等[12]研究了具有零泊松比特征的半凹角蜂窝结构,并将其与正六边形蜂窝和内凹负泊松比蜂窝在面内冲击荷载作用下的抗冲击性能进行对比分析,数值结果表明,半凹角蜂窝的抗冲击性能介于正六边形蜂窝和内凹蜂窝之间。Hu等[13]通过理论分析和数值模拟,研究了内凹角度和壁长对内凹负泊松比蜂窝在大变形下的单轴动态冲击性能的影响,推导出冲击过程中平均冲击应力的经验公式。Zhang等[14]通过有限元模拟,研究了内凹蜂窝x方向的平面内动态冲击行为,发现内凹蜂窝的面内动态性能不仅与冲击速度和边缘厚度有关,还受蜂窝壁角的影响。Li等[15]通过单轴和双轴压缩模拟以及理论分析,研究了正六边形蜂窝结构的面内压缩动态力学性能,分析了双轴压缩的变形模式,结果表明:相比单轴冲击,双轴冲击下在xy方向的真实应力增强,能量吸收能力也得到了提高,且完全致密化阶段比单轴压缩阶段更平滑。此外,Li等[16]研究了六边形、内凹、混合3种蜂窝模型在单、双轴冲击下的面内动态力学性能,结果表明:正交双轴冲击下,六边形蜂窝表现出3种变形模式,内凹和混合型蜂窝没有明显的过渡模式,由于负泊松比效应的影响,内凹蜂窝具有较差的耗能能力。

    值得注意的是,自然界中的蜂窝结构和人造蜂窝结构在细观上总存在一定的缺陷,从而引起结构的不规则性,力学性能也会发生一定的变化。Ajdari等[17]通过数值模拟研究了正六边形和不规则二维蜂窝的平面内动态冲击问题,分析了孔壁缺失和空间扰动形成的结构微观不规则性对力学性能的影响。Alkhader等[18]用函数定义六边形蜂窝、随机Voronoi泡沫以及正方形和三角形拓扑结构等多种二维拓扑结构的不规则程度,以研究其单轴压缩响应,结果表明,相对于以弯曲为主的结构,以拉伸为主的结构有表现出灾难性屈服后软化反应的趋势,而不规则性则会导致更多的弯曲现象。Liu等[19]对内凹蜂窝材料的面内动态冲击过程进行了数值模拟,并在此基础上定义了内凹蜂窝结构的不规则性,分析发现,在准静态下不规则的内凹蜂窝比规则的正六边形蜂窝能吸收更多的能量,但这种情况在高速撞击下逆转。Zheng等[20]通过数值模拟研究了坐标扰动和Voronoi随机模型两种不规则模型与正六边形蜂窝在不同冲击速度下的变形模式和平台冲击力,得到不规则性结构更具复杂性的结论。Zhu等[21]研究了孔的不规则性对二维随机泡沫弹性性能的影响,构造了不规则度不同的周期性随机结构,并通过数值模拟确定了其有效弹性性能,结果表明,二维随机泡沫体形状越不规则,有效弹性模量和剪切模量越大,在一定的压比相对密度下,体积模量越小。

    综上所述,实际中蜂窝结构往往是不规则的,且易受双轴冲击载荷作用。而关于不规则结构在双轴冲击下的研究较少,为此本工作将针对不规则内凹负泊松比蜂窝结构在双轴冲击下的面内冲击响应,分析规则度和冲击速度对结构变形影响的规律。

    采用如图1所示的节点扰动方法来建立不规则内凹蜂窝的有限元模型。

    图  1  坐标扰动
    Figure  1.  Coordinate perturbation

    图1所示,将规则的内凹六边形蜂窝结构的每个节点按照式(1)中的方法进行随机扰动

    {yi=y0+Δysinθmxi=x0+Δxcosθm
    (1)

    式中:θm为角度随机值(0θm360),x0y0为节点的原始坐标,xiyi为扰动后的节点坐标。为了保证随机扰动之后模型的棱壁不会重叠,需要对ΔxΔy进行如式(2)的限制

    {μ=Δx2+Δy20μμm
    (2)

    式中:μ为节点扰动的随机长度;μm为扰动的最大长度,0μml1/2。内凹负泊松比蜂窝结构的不规则度可以定义为

    K=2μml1
    (3)

    式中:l1为规则蜂窝结构的最短棱壁长度。

    假设蜂窝结构所有棱壁的厚度均相同,则可通过改变棱壁的厚度来调节蜂窝结构的相对密度。本研究采用15%的相对密度进行分析,图2显示了部分模型。

    图  2  不规则蜂窝模型的建立
    Figure  2.  Establishment of irregular honeycomb model

    图2中内凹蜂窝结构的相对密度Δρ可以表示为

    Δρ=ρρs=Ni=1li×tL1×L2
    (4)

    此外,对于规则的内凹负泊松比蜂窝,其相对密度Δρr也可以表示为

    Δρr=12tl1(l2/l1+2)cosα(l2/l1+sinα)
    (5)

    式中:ρ为模型的密度,ρs为基体材料的密度,li为各个孔壁的长度,t为孔壁的厚度,N为孔壁的数量,L1L2为整个蜂窝结构的长度和宽度,l2为规则蜂窝结构的最长棱壁长度。

    采用ABAQUS/EXPLICIT软件进行分析。模型的边界条件设置:在两个正交方向上,将模型置于两块刚性板之间、底部刚性板之上,底部和左端的刚性板作为固定端, 顶部和右端作为冲击端,冲击速度为3~100 m/s,同时约束内凹蜂窝结构的面内自由度,如图3所示。建立的内凹蜂窝结构的主要参数为L1 = 129.9 mm, L2 = 120.0 mm, l1 = 5 mm, l2 = 10 mm,θ = 60°。由于蜂窝铝具有高强度和高刚度的良好力学性能,本研究采用铝合金作为基体材料,主要参数为:密度ρ = 2700 kg/m3,弹性模量E = 72 GPa,泊松比为0.33,屈服强度σy = 103 MPa,并采用线性强化模型,图4为结构基体材料的本构关系,其中Et为切线模量,σs为线性强化模型的屈服强度。蜂窝细胞数量为15 × 15,可保证材料不受尺寸效应的影响。所有单元均采用4节点壳单元进行网格划分,网格单元尺寸为0.5 mm,节点数为28660,网格数为 19 540,建立无摩擦和通用接触。

    图  3  双轴加载模型的边界条件
    Figure  3.  Boundary conditions for the biaxial loading model
    图  4  基体材料的本构关系
    Figure  4.  Constitutive relation of the matrix material

    为了对双轴冲击条件进行分类,采用与双轴冲击有关的参数λ,表达式为λ=vx/vy,其中vxvy分别为 xy 方向的冲击速度。这里只讨论 λ=1 的情况,显然 λ=1 时为等双轴冲击。首先研究了不同规则度(K = 0, 0.6, 1.0)的内凹负泊松比在不同冲击速度(6、50和100 m/s)下的变形模式。图5图6图7给出了内凹蜂窝结构的结构变形情况。需要说明的是,为更好地展示变形结果,每隔约10%的应变截取一张变形模态图,同时为了清晰、规律地显示图像,所有图形都设置了相同的大小。

    图  5  K = 0时不同冲击速度下的变形模态
    Figure  5.  Deformation modes under different impact velocities at K = 0
    图  6  K = 0.6时不同冲击速度下的变形模态
    Figure  6.  Deformation modes under different impact velocities at K = 0.6
    图  7  K = 1.0时不同冲击速度下的变形模态
    Figure  7.  Deformation modes under different impact velocities at K = 1.0

    图5可以看出,对于规则的内凹蜂窝,在等双轴低速冲击过程中,结构首先在交叉处棱壁堆积,从而使内部先形成四边形,结构整体的变形在近端和远端都较均匀。这与文献[15]中内凹蜂窝的变形是一致的,也验证了本模型的有效性。持续的压缩使孔壁进一步堆积形成局部致密化,结构的致密过程主要是局部致密。由于负泊松比效应的影响,材料在一个方向受压时,其另一个正交方向会出现颈缩。因此,在双向冲击受压的情况下,结构会更早进入完全密实阶段。随着冲击速度的增大,结构从冲击端(上部和右端)开始密实,而固定端几乎没有变形。随着应变增加,致密向固定端传递,直至完全进入密实化。从图5中第2行和第3行图像还可以看出,随着冲击速度的增大,蜂窝结构的下端会产生部分“翘起”现象,这是由于负泊松比效应的影响会导致结构颈缩,且结构与固定端端部是无绑定约束,从而造成这类现象。

    与规则蜂窝不同的是,不规则蜂窝结构在低速冲击下,其内部不会形成较为规则的四边形。这是由于不规则度的存在使结构棱壁处的堆叠也变得不规则。此外,从图5图7ε=0.5 列可以看出,由于不规则度的引入,结构的变形模式由局部密实转变为整体密实,从而使内凹蜂窝结构在相同压缩程度下,密实化程度明显降低。在高速冲击下(v = 100 m/s),从图5图7中可以看出,不规则程度越高,冲击端的致密程度越大。这是因为高速冲击下,结构在冲击端的密实主要是棱壁的弯曲折叠过程,随着不规则度的增加,棱壁的弯曲折叠受到的约束增大,向固定端传递的速度也会降低,所以不规则蜂窝结构的密实过程会更长,而在冲击端密实程度也会更高。此外,从图6图7ε=0.6v = 100 m/s对应的变形情况可以看出,固定端还有尚未变形进入密实的孔,说明不规则蜂窝结构具有较长的平台阶段,能够承受更大的压缩变形。

    图8图9给出了蜂窝结构在双轴冲击下两个正交方向冲击端的名义应力-应变曲线,其中名义应力σ通过冲击端的反力除以对应截面的原始面积获得,名义应变ε通过冲击位移除以对应的原长获得。从图中可以看出,内凹蜂窝结构在不同方向上的σ-ε曲线均表现出典型多孔材料在受压时所具有的弹性阶段、平台阶段和密实阶段3部分。

    图  8  蜂窝结构在不同冲击速度下x方向的应力-应变曲线
    Figure  8.  Stress-strain curves of honeycomb structure in x direction under different impact velocities
    图  9  蜂窝结构在不同冲击速度下y方向上的应力-应变曲线
    Figure  9.  Stress-strain curves of honeycomb structure in y direction under different impact velocities

    图8图9v = 6 m/s时的曲线可以看出,对于K = 0时的应力-应变曲线,在应变接近0.4处,结构变形的平台阶段均出现一个上升的阶梯,并且x方向最明显。结合2.1节关于变形模态的分析,认为这主要是由于在等低速双轴冲击下内凹蜂窝结构变形主要经历两种棱壁堆叠过程,即堆叠形成四边形以及四边形的进一步弯曲堆叠。由于第1步的堆叠,棱壁基本不会屈曲,主要是旋转折叠,因此这一平台阶段的应力水平较低;第2步的堆叠主要是棱壁的屈曲折叠,所以此阶段的应力水平较高。从图8图9中也可以看出,K = 0时,结构会更早进入密实化阶段,而不规则度的引入使结构拥有较长的平台阶段,密实化阶段出现滞后现象,此现象与2.1节中变形模态的分析结果是一致的。随着冲击速度的增大,平台阶段的应力升高,说明结构的能量吸收能力随着冲击速度的增大而增强。

    蜂窝结构的平台应力一般表示为

    σp=1εdε0εdε0σ(ε)dε
    (6)

    式中:σp为平台应力;ε0为对应初始应力峰值的名义应变;εd为锁定应变,为蜂窝结构密实化阶段所对应的应变;σ(ε)为名义应力-应变曲线。

    图10给出了不规则度不同的内凹蜂窝结构在两个正交方向上不同冲击速度下的平台应力变化趋势。从图10可以看到:随着冲击速度的增大,两个方向上的平台应力值都会上升;对于K = 0的规则蜂窝结构,其在两个方向上的平台应力相差较大,这是结构的各向异性所导致的。引入不规则度时,在高速冲击下两个方向上的平台应力变化大小及趋势都较接近,说明结构的各向异性降低,这一点从2.1节内凹蜂窝结构的变形模态中也可以看出。

    图  10  不同冲击速度下不规则内凹蜂窝结构在xy方向的平台应力比较
    Figure  10.  Comparison of the plateau stress of irregular re-entrant honeycomb structures in x and y directions under different velocities

    在动态冲击过程中,能量主要由材料的塑性变形消耗。采用比塑性耗散能表征单位质量的能量吸收能力,表达式为

    W=EPEDM
    (7)

    式中:EPED为塑性耗散能,可以从有限元分析软件中直接获得;M为结构的质量。

    图11给出了内凹蜂窝结构在6、50和100 m/s 3种不同冲击速度下的比塑性能量耗散与 y 方向冲击应变的关系。从图11中可以看出,当应变较低时,比塑性耗散能W上升较缓慢,且所有曲线基本重合。这表明在早期,不规则度对内凹蜂窝结构的影响较小。随着压缩程度的增加,W增加的速率变大,且K = 0时,W增加得最快,表明结构开始进入密实阶段,这是由结构的负泊松比效应引起的。对于不规则蜂窝结构,曲线上升得较缓慢,表明不规则度的引入使结构的平台阶段延长,结构具有更强的能量吸收能力。

    图  11  蜂窝结构在不同冲击速度下的比塑性耗散能曲线
    Figure  11.  Specific plastic dissipation energy curves of honeycomb structure at different impact velocities

    采用有限元方法研究了具有不同不规则度内凹负泊松比结构的面内双轴冲击响应,得到了以下结论。

    (1)内凹蜂窝结构的变形受冲击速度的影响。随着冲击速度的提高,蜂窝结构的变形逐渐转向逐层致密,受结构负泊松比效应的影响,在等高速双轴压缩时,结构的固定端会有局部“翘起”现象。此外,由于不规则度的引入,在低速冲击下,结构的密实化过程从局部致密转变为整体致密,从而导致在相同的压缩程度下,结构的密实化程度降低。

    (2)随着冲击速度的增大,平台阶段的应力上升,能量吸收能力更强,比塑性耗散能也上升。不规则度的引入延长了平台阶段,降低了结构的各向异性程度,从而提高了结构的能量吸收能力。

  • 图  有限元模型

    Figure  1.  Finite element model

    图  弹体几何参数

    Figure  2.  Geometric parameters of the projectile

    图  有限元模型中的载荷施加

    Figure  3.  Loading configuration in the finite element model

    图  内聚力单元的双线性力-位移定律模型

    Figure  4.  Bilinear traction-separation law model of cohesive element

    图  有限元模型中的内聚力单元

    Figure  5.  Cohesive elements in the finite element model

    图  PBX在2000 s−1应变率下的应力-应变曲线

    Figure  6.  Stress-strain curves of PBX at the strain rate of 2000 s−1

    图  数值模拟得到的装药内部损伤演化历程

    Figure  7.  Damage evolution contour of explosive charge obtained from numerical simulation

    图  侵彻结束后装药CT扫描重构图像

    Figure  8.  Reconstruction of CT scan of the charge after penetration

    图  不同侵彻速度侵彻后装药的损伤

    Figure  9.  Damage contour of explosive charge after penetration at different velocities

    图  10  装药尾部易损伤区域的轴向和径向应力时程曲线及边界条件

    Figure  10.  Axial and radial stress histories and boundary conditions at the danger zone of the charge tail region

    图  11  侵彻双层靶板过程中PBX装药细观结构的主应变分布

    Figure  11.  Principal strain distributions for microscopic model during the penetration of double-layer target

    图  12  侵彻双层靶板过程中PBX装药的损伤演化

    Figure  12.  Damage evolution process of PBX during penetration of double-layer target

    表  1  弹壳、靶板和缓冲层的材料参数

    Table  1.   Parameters of projectile shell, target, and buffer layer

    Material ρ/(kg·m−3) μ E/GPa A/MPa B/MPa n C m ˙ε0/s−1
    35CrMnSi steel 7830 0.30 204 1440 1501 0.4403 0.039 0.404 10−3
    45 steel 7830 0.33 210 496 434 0.2600 0.014 1.030 1.0
    Polycarbonate 1190 0.38 3.6 84 3228 3.1456 0.089 1.010 0.1
    下载: 导出CSV

    表  2  PBX装药的内聚力单元参数

    Table  2.   Cohesive elements parameters of PBX charge

    Kcoh/(GPa·m−1)σ/MPaG/(kN·m−1)
    1700230.17
    下载: 导出CSV

    表  3  PBX装药颗粒、黏结剂和界面内聚力单元参数

    Table  3.   Cohesive elements parameters of particle, binder and interface

    Cohesive elementKcoh/(GPa·m−1)σ/MPaG/(kN·m−1)
    Particle18006.000.010
    Binder9007.500.150
    Particle-binder interface8002.750.012
    下载: 导出CSV
  • [1] 李媛媛, 高立龙, 李巍, 等. 抗过载炸药装药侵彻安全性试验研究 [J]. 含能材料, 2010, 18(6): 702–705. doi: 10.3969/j.issn.1006-9941.2010.06.021

    LI Y Y, GAO L L, LI W, et al. Experiment research on security of insensitive explosive charge during penetration [J]. Chinese Journal of Energetic Materials, 2010, 18(6): 702–705. doi: 10.3969/j.issn.1006-9941.2010.06.021
    [2] 陈文, 张庆明, 胡晓东, 等. 侵彻过程冲击载荷对装药损伤实验研究 [J]. 含能材料, 2009, 17(3): 321–325. doi: 10.3969/j.issn.1006-9941.2009.03.017

    CHEN W, ZHANG Q M, HU X D, et al. Experimental study on damage to explosive charge by impact load in the process of penetration [J]. Chinese Journal of Energetic Materials, 2009, 17(3): 321–325. doi: 10.3969/j.issn.1006-9941.2009.03.017
    [3] LI X, LIU Y Z, SUN Y. Dynamic mechanical damage and non-shock initiation of a new polymer bonded explosive during penetration [J]. Polymers, 2020, 12(6): 1342. doi: 10.3390/polym12061342
    [4] 李晓. 侵彻过程中PBX装药的损伤与点火机制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020.

    LI X. Investigations on damage and initiation mechanism of PBX charge during penetration [D]. Harbin: Harbin Institute of Technology, 2020.
    [5] 赵生伟, 初哲, 李明. 抗侵彻过载战斗部装药安定性实验研究 [J]. 兵工学报, 2010, 31(Suppl 1): 284–287.

    ZHAO S W, CHU Z, LI M. Experiment investigation on stability of explosive in anti-overload warhead [J]. Acta Armamentarii, 2010, 31(Suppl 1): 284–287.
    [6] 成丽蓉, 汪德武, 贺元吉. 侵彻单层和多层靶时战斗部装药损伤及热点生成机理研究 [J]. 兵工学报, 2020, 41(1): 32–39. doi: 10.3969/j.issn.1000-1093.2020.01.004

    CHENG L R, WANG D W, HE Y J. Research on the damage and hot-spot generation in explosive charges during penetration into single- or multi-layer target [J]. Acta Armamentarii, 2020, 41(1): 32–39. doi: 10.3969/j.issn.1000-1093.2020.01.004
    [7] 毕超, 郭翔, 屈可朋, 等. 斜侵彻靶板过程中装药损伤的数值模拟 [J]. 火炸药学报, 2022, 45(3): 383–387. doi: 10.14077/j.issn.1007-7812.202201009

    BI C, GUO X, QU K P, et al. Numerical simulation of charge damage during oblique penetration [J]. Chinese Journal of Explosives & Propellants, 2022, 45(3): 383–387. doi: 10.14077/j.issn.1007-7812.202201009
    [8] 崔云霄. 冲击载荷作用下PBX炸药的损伤破坏研究 [D]. 北京: 北京理工大学, 2017.

    CUI Y X. Research on damage and destruction of PBX explosive under impact load [D]. Beijing: Beijing Institute of Technology, 2017.
    [9] 石啸海, 戴开达, 陈鹏万, 等. 战斗部侵彻过程中PBX装药动态损伤数值模拟 [J]. 中国测试, 2016, 42(10): 138–142. doi: 10.11857/j.issn.1674-5124.2016.10.026

    SHI X H, DAI K D, CHEN P W, et al. Numerical simulation of dynamic damage of PBX charge during the warhead penetration process [J]. China Measurement & Test, 2016, 42(10): 138–142. doi: 10.11857/j.issn.1674-5124.2016.10.026
    [10] 石啸海, 余春祥, 戴开达, 等. 侵彻过程中弹头形状对PBX炸药损伤的影响 [J]. 弹箭与制导学报, 2019, 39(3): 81–85, 89. doi: 10.15892/j.cnki.djzdxb.2019.03.019

    SHI X H, YU C X, DAI K D, et al. The influence of nose shape to dynamic damage of PBX charge during the penetration process [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(3): 81–85, 89. doi: 10.15892/j.cnki.djzdxb.2019.03.019
    [11] 张学伦, 汪衡, 谭正军, 等. 混凝土靶边界效应与弹丸长径比关联性的研究 [J]. 兵器装备工程学报, 2018, 39(4): 11–13, 18. doi: 10.11809/bqzbgcxb2018.04.003

    ZHANG X L, WANG H, TAN Z J, et al. Relevance between aspect ratio of projectile and boundary effect of concrete target [J]. Journal of Ordnance Equipment Engineering, 2018, 39(4): 11–13, 18. doi: 10.11809/bqzbgcxb2018.04.003
    [12] 孙宝平, 段卓平, 万经伦, 等. 基于Visco-SCRAM模型的侵彻装药点火研究 [J]. 爆炸与冲击, 2015, 35(5): 689–695. doi: 10.11883/1001-1455(2015)05-0689-07

    SUN B P, DUAN Z P, WAN J L, et al. Investigation on ignition of an explosive charge in a projectile during penetration based on Visco-SCRAM model [J]. Explosion and Shock Waves, 2015, 35(5): 689–695. doi: 10.11883/1001-1455(2015)05-0689-07
    [13] 李硕. 强冲击载荷下35CrMnSi动态力学行为与断裂机理研究 [D]. 太原: 中北大学, 2015.

    LI S. Study on dynamic mechanical behavior and fracture mechanism of 35CrMnSi under impact loads [D]. Taiyuan: North University of China, 2015.
    [14] 赵丽俊, 郝永平, 黄晓杰, 等. 杆式射流侵彻45钢靶数值分析及试验研究 [J]. 兵器装备工程学报, 2023, 44(8): 147–153. doi: 10.11809/bqzbgcxb2023.08.021

    ZHAO L J, HAO Y P, HUANG X J, et al. Numerical simulation and experimental research on jetting projectile charge penetrating 45 steel target [J]. Journal of Ordnance Equipment Engineering, 2023, 44(8): 147–153. doi: 10.11809/bqzbgcxb2023.08.021
    [15] 于鹏. 航空聚碳酸酯动态力学性能及本构关系研究 [D]. 广州: 华南理工大学, 2014.

    YU P. Investigation on the dynamic characteristics and constitutive model of polycarbonate of aircraft [D]. Guangzhou: South China University of Technology, 2014.
    [16] XIAO Y C, ZHANG Q, FAN C Y, et al. Numerical analysis of the damage and failure behavior of polymer-bonded explosives using discrete element method [J]. Computational Particle Mechanics, 2024, 11(2): 579–598. doi: 10.1007/s40571-023-00640-8
    [17] XIAO Y C, ZHANG Q, GONG T Y, et al. Experimental analysis and multi-scale simulation of the fracture behavior of polymer-bonded explosives based on the dynamic notched semi-circular bend method [J]. International Journal of Solids and Structures, 2024, 291: 112690. doi: 10.1016/j.ijsolstr.2024.112690
    [18] BI C, GUO X, WANG A H, et al. Strain-rate-dependent cohesive zone modelling of charge damage behavior when a projectile penetrates multilayered targets [J]. Acta Mechanica, 2023, 234(7): 2869–2887. doi: 10.1007/s00707-023-03541-2
    [19] XIAO Y C, GONG T Y, ZHANG X W, et al. Multiscale modeling for dynamic compressive behavior of polymer bonded explosives [J]. International Journal of Mechanical Sciences, 2023, 242: 108007. doi: 10.1016/j.ijmecsci.2022.108007
    [20] YANG Z, KANG G, LIU R, et al. Predicting the mechanical behaviour of highly particle-filled polymer composites using the nonlinear finite element method [J]. Composite Structures, 2022, 286: 115275. doi: 10.1016/j.compstruct.2022.115275
    [21] BARUA A, KIM S, HORIE Y, et al. Prediction of probabilistic ignition behavior of polymer-bonded explosives from microstructural stochasticity [J]. Journal of Applied Physics, 2013, 113(18): 184907. doi: 10.1063/1.4804251
    [22] HARDIN D B, ZHOU M. Effect of viscoplasticity on ignition sensitivity of an HMX based PBX [J]. AIP Conference Proceedings, 2017, 1793(1): 080005. doi: 10.1063/1.4971611
    [23] CHEN X, DENG X M, SUTTON M A, et al. An inverse analysis of cohesive zone model parameter values for ductile crack growth simulations [J]. International Journal of Mechanical Sciences, 2014, 79: 206–215. doi: 10.1016/j.ijmecsci.2013.12.006
    [24] AIROLDI A, DÁVILA C G. Identification of material parameters for modelling delamination in the presence of fibre bridging [J]. Composite Structures, 2012, 94(11): 3240–3249. doi: 10.1016/j.compstruct.2012.05.014
    [25] VALOROSO N, SESSA S, LEPORE M, et al. Identification of mode-Ⅰ cohesive parameters for bonded interfaces based on DCB test [J]. Engineering Fracture Mechanics, 2013, 104: 56–79. doi: 10.1016/j.engfracmech.2013.02.008
    [26] YAMAKOV V, SAETHER E, GLAESSGEN E H. Multiscale modeling of intergranular fracture in aluminum: constitutive relation for interface debonding [J]. Journal of Materials Science, 2008, 43(23/24): 7488–7494. doi: 10.1007/s10853-008-2823-7
    [27] XU Y J, ZHAO S, JIN G H, et al. Ductile fracture of solder-Cu interface and inverse identification of its interfacial model parameters [J]. Mechanics of Materials, 2017, 114: 279–292. doi: 10.1016/j.mechmat.2017.08.013
    [28] FENG T, XU J S, HAN L, et al. Modeling and simulation of the debonding process of composite solid propellants [J]. IOP Conference Series: Materials Science and Engineering, 2017, 220: 012020.
    [29] CUI J Y, QIANG H F, WANG J X. Experimental and simulation research on microscopic damage of HTPB propellant under tension-shear loading [J]. AIP Advances, 2022, 12(8): 085214. doi: 10.1063/5.0101388
    [30] CUI H R, SHEN Z B, LI H Y. A novel time dependent cohesive zone model for the debonding interface between solid propellant and insulation [J]. Meccanica, 2018, 53(14): 3527–3544. doi: 10.1007/s11012-018-0894-3
    [31] 胡静. Janus粒子对硅胶类热力学不相容体系相容性的影响及其应用研究 [D]. 北京: 北京化工大学, 2021.

    HU J. The effect and application of Janus particles on the compatibility of inherent immiscible blends composed of silicone rubber [D]. Beijing: Beijing University of Chemical Technology, 2021.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  69
  • PDF下载量:  32
出版历程
  • 收稿日期:  2024-04-18
  • 修回日期:  2024-05-17
  • 网络出版日期:  2024-08-30
  • 刊出日期:  2024-12-05

目录

/

返回文章
返回