侵彻双层靶板过程中PBX装药的宏-细观损伤数值模拟研究

张晓微 赵河明 郑晓波 张巧 王志军 肖有才

张晓微, 赵河明, 郑晓波, 张巧, 王志军, 肖有才. 侵彻双层靶板过程中PBX装药的宏-细观损伤数值模拟研究[J]. 高压物理学报, 2024, 38(6): 064201. doi: 10.11858/gywlxb.20240795
引用本文: 张晓微, 赵河明, 郑晓波, 张巧, 王志军, 肖有才. 侵彻双层靶板过程中PBX装药的宏-细观损伤数值模拟研究[J]. 高压物理学报, 2024, 38(6): 064201. doi: 10.11858/gywlxb.20240795
ZHANG Xiaowei, ZHAO Heming, ZHENG Xiaobo, ZHANG Qiao, WANG Zhijun, XIAO Youcai. Numerical Simulation Study on Macro-Microscopic Damage of PBX Charge during Penetration of Double-Layer Targets[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064201. doi: 10.11858/gywlxb.20240795
Citation: ZHANG Xiaowei, ZHAO Heming, ZHENG Xiaobo, ZHANG Qiao, WANG Zhijun, XIAO Youcai. Numerical Simulation Study on Macro-Microscopic Damage of PBX Charge during Penetration of Double-Layer Targets[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064201. doi: 10.11858/gywlxb.20240795

侵彻双层靶板过程中PBX装药的宏-细观损伤数值模拟研究

doi: 10.11858/gywlxb.20240795
基金项目: 国家自然科学基金(11802273,12372368);山西省基础研究面上项目(202303021211142);国防科工局基础科研重点项目(JCKY2017207B055)
详细信息
    作者简介:

    张晓微(1986-),女,博士研究生,主要从事弹药安全研究. E-mail:hgdzhangxiaowei@163.com

    通讯作者:

    肖有才(1988-),男,博士,副教授,主要从事材料动态力学、损伤力学、爆炸与冲击相关问题研究. E-mail:xiaoyoucai@nuc.edu.cn

  • 中图分类号: O381; O521.9

Numerical Simulation Study on Macro-Microscopic Damage of PBX Charge during Penetration of Double-Layer Targets

  • 摘要: 针对高速战斗部侵彻双层目标时装药的损伤问题,基于内聚力模型开展了PBX装药战斗部侵彻双层靶板的数值模拟研究。采用内聚力模型计算装药损伤的出现与演化,分析了侵彻速度与损伤发生的关系,通过损伤比对侵彻结束后PBX装药的损伤进行了量化,建立了PBX装药细观损伤仿真模型,研究了侵彻双层靶板过程中PBX装药细观损伤机制。结果表明:当弹体垂直侵彻双层靶板时,在压-拉反复作用下,装药尾部形成了垂直于加载方向的贯穿裂纹,且装药的损伤程度随着侵彻速度的增大而增大;在侵彻双层靶板过程中,PBX装药的主要损伤模式是界面脱粘,微裂纹最先出现在颗粒边角处,并且逐渐增多,最终界面微裂纹失稳扩展并汇聚为连续的主裂纹。

     

  • 图  有限元模型

    Figure  1.  Finite element model

    图  弹体几何参数

    Figure  2.  Geometric parameters of the projectile

    图  有限元模型中的载荷施加

    Figure  3.  Loading configuration in the finite element model

    图  内聚力单元的双线性力-位移定律模型

    Figure  4.  Bilinear traction-separation law model of cohesive element

    图  有限元模型中的内聚力单元

    Figure  5.  Cohesive elements in the finite element model

    图  PBX在2000 s−1应变率下的应力-应变曲线

    Figure  6.  Stress-strain curves of PBX at the strain rate of 2000 s−1

    图  数值模拟得到的装药内部损伤演化历程

    Figure  7.  Damage evolution contour of explosive charge obtained from numerical simulation

    图  侵彻结束后装药CT扫描重构图像

    Figure  8.  Reconstruction of CT scan of the charge after penetration

    图  不同侵彻速度侵彻后装药的损伤

    Figure  9.  Damage contour of explosive charge after penetration at different velocities

    图  10  装药尾部易损伤区域的轴向和径向应力时程曲线及边界条件

    Figure  10.  Axial and radial stress histories and boundary conditions at the danger zone of the charge tail region

    图  11  侵彻双层靶板过程中PBX装药细观结构的主应变分布

    Figure  11.  Principal strain distributions for microscopic model during the penetration of double-layer target

    图  12  侵彻双层靶板过程中PBX装药的损伤演化

    Figure  12.  Damage evolution process of PBX during penetration of double-layer target

    表  1  弹壳、靶板和缓冲层的材料参数

    Table  1.   Parameters of projectile shell, target, and buffer layer

    Material $ \rho $/(kg·m−3) μ E/GPa A/MPa B/MPa n C m $ {\dot \varepsilon _0} $/s−1
    35CrMnSi steel 7830 0.30 204 1440 1501 0.4403 0.039 0.404 10−3
    45 steel 7830 0.33 210 496 434 0.2600 0.014 1.030 1.0
    Polycarbonate 1190 0.38 3.6 84 3228 3.1456 0.089 1.010 0.1
    下载: 导出CSV

    表  2  PBX装药的内聚力单元参数

    Table  2.   Cohesive elements parameters of PBX charge

    Kcoh/(GPa·m−1)$ \sigma $/MPaG/(kN·m−1)
    1700230.17
    下载: 导出CSV

    表  3  PBX装药颗粒、黏结剂和界面内聚力单元参数

    Table  3.   Cohesive elements parameters of particle, binder and interface

    Cohesive elementKcoh/(GPa·m−1)$ \sigma $/MPaG/(kN·m−1)
    Particle18006.000.010
    Binder9007.500.150
    Particle-binder interface8002.750.012
    下载: 导出CSV
  • [1] 李媛媛, 高立龙, 李巍, 等. 抗过载炸药装药侵彻安全性试验研究 [J]. 含能材料, 2010, 18(6): 702–705. doi: 10.3969/j.issn.1006-9941.2010.06.021

    LI Y Y, GAO L L, LI W, et al. Experiment research on security of insensitive explosive charge during penetration [J]. Chinese Journal of Energetic Materials, 2010, 18(6): 702–705. doi: 10.3969/j.issn.1006-9941.2010.06.021
    [2] 陈文, 张庆明, 胡晓东, 等. 侵彻过程冲击载荷对装药损伤实验研究 [J]. 含能材料, 2009, 17(3): 321–325. doi: 10.3969/j.issn.1006-9941.2009.03.017

    CHEN W, ZHANG Q M, HU X D, et al. Experimental study on damage to explosive charge by impact load in the process of penetration [J]. Chinese Journal of Energetic Materials, 2009, 17(3): 321–325. doi: 10.3969/j.issn.1006-9941.2009.03.017
    [3] LI X, LIU Y Z, SUN Y. Dynamic mechanical damage and non-shock initiation of a new polymer bonded explosive during penetration [J]. Polymers, 2020, 12(6): 1342. doi: 10.3390/polym12061342
    [4] 李晓. 侵彻过程中PBX装药的损伤与点火机制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020.

    LI X. Investigations on damage and initiation mechanism of PBX charge during penetration [D]. Harbin: Harbin Institute of Technology, 2020.
    [5] 赵生伟, 初哲, 李明. 抗侵彻过载战斗部装药安定性实验研究 [J]. 兵工学报, 2010, 31(Suppl 1): 284–287.

    ZHAO S W, CHU Z, LI M. Experiment investigation on stability of explosive in anti-overload warhead [J]. Acta Armamentarii, 2010, 31(Suppl 1): 284–287.
    [6] 成丽蓉, 汪德武, 贺元吉. 侵彻单层和多层靶时战斗部装药损伤及热点生成机理研究 [J]. 兵工学报, 2020, 41(1): 32–39. doi: 10.3969/j.issn.1000-1093.2020.01.004

    CHENG L R, WANG D W, HE Y J. Research on the damage and hot-spot generation in explosive charges during penetration into single- or multi-layer target [J]. Acta Armamentarii, 2020, 41(1): 32–39. doi: 10.3969/j.issn.1000-1093.2020.01.004
    [7] 毕超, 郭翔, 屈可朋, 等. 斜侵彻靶板过程中装药损伤的数值模拟 [J]. 火炸药学报, 2022, 45(3): 383–387. doi: 10.14077/j.issn.1007-7812.202201009

    BI C, GUO X, QU K P, et al. Numerical simulation of charge damage during oblique penetration [J]. Chinese Journal of Explosives & Propellants, 2022, 45(3): 383–387. doi: 10.14077/j.issn.1007-7812.202201009
    [8] 崔云霄. 冲击载荷作用下PBX炸药的损伤破坏研究 [D]. 北京: 北京理工大学, 2017.

    CUI Y X. Research on damage and destruction of PBX explosive under impact load [D]. Beijing: Beijing Institute of Technology, 2017.
    [9] 石啸海, 戴开达, 陈鹏万, 等. 战斗部侵彻过程中PBX装药动态损伤数值模拟 [J]. 中国测试, 2016, 42(10): 138–142. doi: 10.11857/j.issn.1674-5124.2016.10.026

    SHI X H, DAI K D, CHEN P W, et al. Numerical simulation of dynamic damage of PBX charge during the warhead penetration process [J]. China Measurement & Test, 2016, 42(10): 138–142. doi: 10.11857/j.issn.1674-5124.2016.10.026
    [10] 石啸海, 余春祥, 戴开达, 等. 侵彻过程中弹头形状对PBX炸药损伤的影响 [J]. 弹箭与制导学报, 2019, 39(3): 81–85, 89. doi: 10.15892/j.cnki.djzdxb.2019.03.019

    SHI X H, YU C X, DAI K D, et al. The influence of nose shape to dynamic damage of PBX charge during the penetration process [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(3): 81–85, 89. doi: 10.15892/j.cnki.djzdxb.2019.03.019
    [11] 张学伦, 汪衡, 谭正军, 等. 混凝土靶边界效应与弹丸长径比关联性的研究 [J]. 兵器装备工程学报, 2018, 39(4): 11–13, 18. doi: 10.11809/bqzbgcxb2018.04.003

    ZHANG X L, WANG H, TAN Z J, et al. Relevance between aspect ratio of projectile and boundary effect of concrete target [J]. Journal of Ordnance Equipment Engineering, 2018, 39(4): 11–13, 18. doi: 10.11809/bqzbgcxb2018.04.003
    [12] 孙宝平, 段卓平, 万经伦, 等. 基于Visco-SCRAM模型的侵彻装药点火研究 [J]. 爆炸与冲击, 2015, 35(5): 689–695. doi: 10.11883/1001-1455(2015)05-0689-07

    SUN B P, DUAN Z P, WAN J L, et al. Investigation on ignition of an explosive charge in a projectile during penetration based on Visco-SCRAM model [J]. Explosion and Shock Waves, 2015, 35(5): 689–695. doi: 10.11883/1001-1455(2015)05-0689-07
    [13] 李硕. 强冲击载荷下35CrMnSi动态力学行为与断裂机理研究 [D]. 太原: 中北大学, 2015.

    LI S. Study on dynamic mechanical behavior and fracture mechanism of 35CrMnSi under impact loads [D]. Taiyuan: North University of China, 2015.
    [14] 赵丽俊, 郝永平, 黄晓杰, 等. 杆式射流侵彻45钢靶数值分析及试验研究 [J]. 兵器装备工程学报, 2023, 44(8): 147–153. doi: 10.11809/bqzbgcxb2023.08.021

    ZHAO L J, HAO Y P, HUANG X J, et al. Numerical simulation and experimental research on jetting projectile charge penetrating 45 steel target [J]. Journal of Ordnance Equipment Engineering, 2023, 44(8): 147–153. doi: 10.11809/bqzbgcxb2023.08.021
    [15] 于鹏. 航空聚碳酸酯动态力学性能及本构关系研究 [D]. 广州: 华南理工大学, 2014.

    YU P. Investigation on the dynamic characteristics and constitutive model of polycarbonate of aircraft [D]. Guangzhou: South China University of Technology, 2014.
    [16] XIAO Y C, ZHANG Q, FAN C Y, et al. Numerical analysis of the damage and failure behavior of polymer-bonded explosives using discrete element method [J]. Computational Particle Mechanics, 2024, 11(2): 579–598. doi: 10.1007/s40571-023-00640-8
    [17] XIAO Y C, ZHANG Q, GONG T Y, et al. Experimental analysis and multi-scale simulation of the fracture behavior of polymer-bonded explosives based on the dynamic notched semi-circular bend method [J]. International Journal of Solids and Structures, 2024, 291: 112690. doi: 10.1016/j.ijsolstr.2024.112690
    [18] BI C, GUO X, WANG A H, et al. Strain-rate-dependent cohesive zone modelling of charge damage behavior when a projectile penetrates multilayered targets [J]. Acta Mechanica, 2023, 234(7): 2869–2887. doi: 10.1007/s00707-023-03541-2
    [19] XIAO Y C, GONG T Y, ZHANG X W, et al. Multiscale modeling for dynamic compressive behavior of polymer bonded explosives [J]. International Journal of Mechanical Sciences, 2023, 242: 108007. doi: 10.1016/j.ijmecsci.2022.108007
    [20] YANG Z, KANG G, LIU R, et al. Predicting the mechanical behaviour of highly particle-filled polymer composites using the nonlinear finite element method [J]. Composite Structures, 2022, 286: 115275. doi: 10.1016/j.compstruct.2022.115275
    [21] BARUA A, KIM S, HORIE Y, et al. Prediction of probabilistic ignition behavior of polymer-bonded explosives from microstructural stochasticity [J]. Journal of Applied Physics, 2013, 113(18): 184907. doi: 10.1063/1.4804251
    [22] HARDIN D B, ZHOU M. Effect of viscoplasticity on ignition sensitivity of an HMX based PBX [J]. AIP Conference Proceedings, 2017, 1793(1): 080005. doi: 10.1063/1.4971611
    [23] CHEN X, DENG X M, SUTTON M A, et al. An inverse analysis of cohesive zone model parameter values for ductile crack growth simulations [J]. International Journal of Mechanical Sciences, 2014, 79: 206–215. doi: 10.1016/j.ijmecsci.2013.12.006
    [24] AIROLDI A, DÁVILA C G. Identification of material parameters for modelling delamination in the presence of fibre bridging [J]. Composite Structures, 2012, 94(11): 3240–3249. doi: 10.1016/j.compstruct.2012.05.014
    [25] VALOROSO N, SESSA S, LEPORE M, et al. Identification of mode-Ⅰ cohesive parameters for bonded interfaces based on DCB test [J]. Engineering Fracture Mechanics, 2013, 104: 56–79. doi: 10.1016/j.engfracmech.2013.02.008
    [26] YAMAKOV V, SAETHER E, GLAESSGEN E H. Multiscale modeling of intergranular fracture in aluminum: constitutive relation for interface debonding [J]. Journal of Materials Science, 2008, 43(23/24): 7488–7494. doi: 10.1007/s10853-008-2823-7
    [27] XU Y J, ZHAO S, JIN G H, et al. Ductile fracture of solder-Cu interface and inverse identification of its interfacial model parameters [J]. Mechanics of Materials, 2017, 114: 279–292. doi: 10.1016/j.mechmat.2017.08.013
    [28] FENG T, XU J S, HAN L, et al. Modeling and simulation of the debonding process of composite solid propellants [J]. IOP Conference Series: Materials Science and Engineering, 2017, 220: 012020.
    [29] CUI J Y, QIANG H F, WANG J X. Experimental and simulation research on microscopic damage of HTPB propellant under tension-shear loading [J]. AIP Advances, 2022, 12(8): 085214. doi: 10.1063/5.0101388
    [30] CUI H R, SHEN Z B, LI H Y. A novel time dependent cohesive zone model for the debonding interface between solid propellant and insulation [J]. Meccanica, 2018, 53(14): 3527–3544. doi: 10.1007/s11012-018-0894-3
    [31] 胡静. Janus粒子对硅胶类热力学不相容体系相容性的影响及其应用研究 [D]. 北京: 北京化工大学, 2021.

    HU J. The effect and application of Janus particles on the compatibility of inherent immiscible blends composed of silicone rubber [D]. Beijing: Beijing University of Chemical Technology, 2021.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  42
  • PDF下载量:  24
出版历程
  • 收稿日期:  2024-04-18
  • 修回日期:  2024-05-17
  • 网络出版日期:  2024-08-30
  • 刊出日期:  2024-12-05

目录

    /

    返回文章
    返回