Mg/Al真空爆炸焊接微观形貌及力学性能

李雪交 孙标 张文喆 刘笑 钱敬业 韩颖

李雪交, 孙标, 张文喆, 刘笑, 钱敬业, 韩颖. Mg/Al真空爆炸焊接微观形貌及力学性能[J]. 高压物理学报, 2024, 38(6): 064105. doi: 10.11858/gywlxb.20240793
引用本文: 李雪交, 孙标, 张文喆, 刘笑, 钱敬业, 韩颖. Mg/Al真空爆炸焊接微观形貌及力学性能[J]. 高压物理学报, 2024, 38(6): 064105. doi: 10.11858/gywlxb.20240793
LI Xuejiao, SUN Biao, ZHANG Wenzhe, LIU Xiao, QIAN Jingye, HAN Ying. Micro-Morphology and Mechanical Properties of Mg/Al Composites under Vacuum Explosion Welding[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064105. doi: 10.11858/gywlxb.20240793
Citation: LI Xuejiao, SUN Biao, ZHANG Wenzhe, LIU Xiao, QIAN Jingye, HAN Ying. Micro-Morphology and Mechanical Properties of Mg/Al Composites under Vacuum Explosion Welding[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064105. doi: 10.11858/gywlxb.20240793

Mg/Al真空爆炸焊接微观形貌及力学性能

doi: 10.11858/gywlxb.20240793
基金项目: 国家自然科学基金(11872002);煤矿安全精准开采国家地方联合工程研究中心开放基金(EC2023024)
详细信息
    作者简介:

    李雪交(1986-),男,博士,副教授,主要从事工业炸药与爆炸加工研究. E-mail:17364305003@163.com

  • 中图分类号: O389; O521.9; TG442

Micro-Morphology and Mechanical Properties of Mg/Al Composites under Vacuum Explosion Welding

  • 摘要: 镁合金和铝合金因具有较高的化学活性,在常规焊接方式下,其表面的氧化物会掺杂到焊接接头内,使得复合板的结合性能下降。为了提高Mg/Al复合板的结合强度,采用真空爆炸焊接法制备了Mg-AZ31B/Al-6061复合板,并与常规空气环境下制备的相同参数复合板进行了对比。通过光学显微镜、扫描电子显微镜、能谱仪以及万能试验机,对结合界面的微观形貌、元素分布和力学性能进行分析。结果表明:由于气体冲击波压力不同,真空环境下复合材料的界面形貌与空气环境下有很大区别;真空环境有效抑制了镁、铝2种金属氧化,在熔化区未检测到金属氧化物。此外,还观察到真空环境下试样的剪切强度和拉伸强度显著增大。因此,真空爆炸焊接对Mg/Al复合板性能的提升起到了重要作用,可以作为一种有效的金属焊接方法。

     

  • 图  真空爆炸罐示意图

    Figure  1.  Schematic diagram of vacuum explosion vessel

    图  试样尺寸(单位:mm)

    Figure  2.  Specimens size (Unit: mm)

    图  力学性能测试装置示意图

    Figure  3.  Schematic diagram of mechanical performance testing device

    图  空气环境下焊接试样的光学显微图像

    Figure  4.  Microscopy images of the specimen welded under air environment

    图  真空环境下焊接试样的光学显微图像

    Figure  5.  Microscopy images of the specimen welded under vacuum environment

    图  空气环境下焊接试样的SEM图像

    Figure  6.  SEM images of the specimen welded in air environment

    图  真空环境下焊接试样的SEM图像

    Figure  7.  SEM images of the specimen welded in vacuum environment

    图  结合界面处的EDS线扫描结果:(a) 空气环境下的线扫描微观结构,(b) 真空环境下的线扫描微观结构,(c) 空气环境下的EDS线扫描界面分析,(d) 真空环境下的EDS线扫描界面分析

    Figure  8.  EDS line scanning results of interface: (a) scanning of microstructure in air environment; (b) scanning of microstructure in vacuum environment; (c) EDS line scan interface analysis in air environment; (d) EDS line scan interface analysis in vacuum environment

    图  结合界面氧元素的EDS测量结果

    Figure  9.  Results of interface oxygen element by EDS measurement

    图  10  2种环境下的剪切强度-位移曲线

    Figure  10.  Shear stress-displacement curves in two environments

    图  11  试样剪切断裂面的宏观形貌

    Figure  11.  Macroscopic morphology of shear fracture section

    图  12  剪切断裂面的SEM形貌:(a)~(c) 空气环境下的焊接试样,(d)~(f) 真空环境下的焊接试样

    Figure  12.  SEM images of shear fracture surface: (a)−(c) welded specimen in air; (d)−(f) welded specimen in vacuum

    图  13  拉伸应力-应变曲线

    Figure  13.  Tensile stress-strain curves

    图  14  空气环境下焊接试样拉伸断口的SEM形貌:(a)~(b) Al侧,(c) 结合界面,(d)~(f) Mg侧

    Figure  14.  SEM morphology of tensile fracture specimen welded in air: (a)–(b) Al side; (c) bonding interface; (d)–(f) Mg side

    图  15  真空环境下焊接试样拉伸断口的SEM形貌:(a)~(b)Al侧,(c)结合界面,(d)~(f)Mg侧

    Figure  15.  SEM morphology of tensile fracture specimen welded in vacuum:(a)–(b) Al side; (c) bonding interface; (d)–(f) Mg side

    表  1  实验材料的化学成分

    Table  1.   Chemical composition of experimental materials

    Materials Component content/%
    Al Si Ca Zn Mn Ti Mg Fe
    Mg-AZ31B 3.100 0.030 0.050 0.820 0.335 Rest 0.003
    Al-6061 Rest 0.800 0.250 0.150 0.150 1.200 0.700
    下载: 导出CSV

    表  2  实验材料的力学性能

    Table  2.   Mechanical properties of the experimental materials

    Materials Vickers hardness/HV Yied strength/MPa Tensile strength/MPa Shear strength/MPa Elongation/%
    Mg-AZ31B 44 140 225 130 15
    Al-6061 108 220 290 124 8
    下载: 导出CSV

    表  3  乳化基质的成分

    Table  3.   Components of the emulsion matrix

    IngredientMass fraction/%
    NH4NO375
    NaNO38
    H2O11
    C18H384
    C24H44062
    下载: 导出CSV

    表  4  2种环境下熔化区物质的化学组成

    Table  4.   Chemical composition of the corresponding substances in the melting zone in both environments

    Melt zone
    substance No.
    EnvironmentComponent content/%
    MgAlOMnZn
    K1Air75.519.94.6
    K2Air78.214.15.91.8
    K3Air81.711.75.80.8
    K4Air96.90.41.60.30.8
    K5Air78.517.93.6
    K6Vacuum79.018.80.41.20.6
    K7Vacuum98.10.60.20.40.7
    下载: 导出CSV

    表  5  复合板不同部位的剪切强度

    Table  5.   Shear strength of different positions of composite plates

    Experimental environmentShear strength/MPa
    2 cm6 cm10 cm
    Air608271
    Vacuum689683
    下载: 导出CSV
  • [1] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488(7411): 294–303. doi: 10.1038/nature11475
    [2] BOROŃSKI D, KOTYK M, MAĆKOWIAK P, et al. Mechanical properties of explosively welded AA2519-AA1050-Ti6Al4V layered material at ambient and cryogenic conditions [J]. Materials & Design, 2017, 133: 390–403.
    [3] XIN T Z, ZHAO Y H, MAHJOUB R, et al. Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition [J]. Science Advances, 2021, 7(23): eabf3039. doi: 10.1126/sciadv.abf3039
    [4] ZHANG N, WANG W X, CAO X Q, et al. The effect of annealing on the interface microstructure and mechanical characteristics of AZ31B/AA6061 composite plates fabricated by explosive welding [J]. Materials & Design, 2015, 65: 1100–1109.
    [5] YAN Y B, ZHANG Z W, SHEN W, et al. Microstructure and properties of magnesium AZ31B-aluminum 7075 explosively welded composite plate [J]. Materials Science and Engineering: A, 2010, 527(9): 2241–2245. doi: 10.1016/j.msea.2009.12.007
    [6] KUMAR P, GHOSH S K, SARAVANAN S, et al. Experimental and simulation studies on explosive welding of AZ31B-Al5052 alloys [J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(5): 2387–2399.
    [7] FRONCZEK D M, CHULIST R, LITYNSKA-DOBRZYNSKA L, et al. Microstructure and kinetics of intermetallic phase growth of three-layered A1050/AZ31/A1050 clads prepared by explosive welding combined with subsequent annealing [J]. Materials & Design, 2017, 130: 120–130.
    [8] SATO Y S, PARK S H C, MICHIUCHI M, et al. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys [J]. Scripta Materialia, 2004, 50(9): 1233–1236. doi: 10.1016/j.scriptamat.2004.02.002
    [9] SANAMAR S, BROKMEIER H G, SCHELL N. Formation of the intermetallic phases Al12Mg17 and Al3Mg2 during heating of elemental Al-Mg composites studied by high-energy X-ray diffraction [J]. Journal of Alloys and Compounds, 2022, 911: 165114. doi: 10.1016/j.jallcom.2022.165114
    [10] SHIRAN M K G, KHALAJ G, POURALIAKBAR H, et al. Effects of heat treatment on the intermetallic compounds and mechanical properties of the stainless steel 321-aluminum 1230 explosive-welding interface [J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(11): 1267–1277. doi: 10.1007/s12613-017-1519-x
    [11] XU Y, KE L M, MAO Y Q, et al. Formation investigation of intermetallic compounds of thick plate Al/Mg alloys joint by friction stir welding [J]. Materials, 2019, 12(17): 2661. doi: 10.3390/ma12172661
    [12] ZENG X Y, WANG W X, LI X Q, et al. Effect of inert gas-shielding on the interface and mechanical properties of Mg/Al explosive welding composite plate [J]. Journal of Manufacturing Processes, 2019, 45: 166–175. doi: 10.1016/j.jmapro.2019.07.007
    [13] WANG Y X, BEOM HG, SUN M, et al. Numerical simulation of explosive welding using the material point method [J]. International Journal of Impact Engineering, 2011, 38(1): 51–60. doi: 10.1016/j.ijimpeng.2010.08.003
    [14] ZHANG T T, WANG W X, ZHANG W, et al. Microstructure evolution and mechanical properties of an AA6061/AZ31B alloy plate fabricated by explosive welding [J]. Journal of Alloys and Compounds, 2018, 735: 1759–1768. doi: 10.1016/j.jallcom.2017.11.285
    [15] LUO C Z, LIANG W, CHEN Z Q, et al. Effect of high temperature annealing and subsequent hot rolling on microstructural evolution at the bond-interface of Al/Mg/Al alloy laminated composites [J]. Materials Characterization, 2013, 84: 34–40. doi: 10.1016/j.matchar.2013.07.007
    [16] MALLICK P K, AGARWAL L. Fatigue of spot friction welded joints of Mg-Mg, Al-Al and Al-Mg alloys [R]. SAE, 2009.
    [17] ZHOU Q, LU H H, LAN X K, et al. Anisotropy in microstructure and shear properties of TA2/Q235 explosive welding interfaces [J]. Journal of Materials Research and Technology, 2023, 25: 6472–6491. doi: 10.1016/j.jmrt.2023.07.080
    [18] ZHOU P J, GUO C H, WANG E H, et al. Interface tensile and fracture behavior of the Ti/Al3Ti metal-intermetallic laminate (MIL) composite under quasi-static and high strain rates [J]. Materials Science and Engineering: A, 2016, 665: 66–75. doi: 10.1016/j.msea.2016.04.020
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  28
  • PDF下载量:  12
出版历程
  • 收稿日期:  2024-04-17
  • 修回日期:  2024-04-24
  • 网络出版日期:  2024-09-19
  • 刊出日期:  2024-12-05

目录

    /

    返回文章
    返回