High-Temperature and High-Pressure Synthesis of High-Entropy Transition Metal Diborides
-
摘要: 高熵过渡金属二硼化物因其优异的力学性能及热物理性能受到了人们的广泛关注。然而,过去通过高温固相反应合成的效率较低。为此,通过高温高压固相反应,在5.5 GPa、2300 ℃的温压条件下合成了以VB2、NbB2、TaB2为基底的6类高熵过渡金属二硼化物。高压提高了高温下的固相反应效率,促进了高熵过渡金属二硼化物的合成。通过X射线衍射和能量色散X射线光谱仪表征并确认了6类高熵过渡金属二硼化物均由纯相组成,不存在氧化物杂质或第二相,且元素分布均匀,不存在元素偏析,证明了高温高压合成高熵过渡金属二硼化物的有效性和普适性。
-
关键词:
- 高熵过渡金属二硼化物 /
- 固相反应 /
- 高温高压 /
- 高压合成
Abstract: High-entropy transition metal diborides have been extensively studied due to their high mechanical and thermodynamic properties. However, the conventional synthesis methods of these materials are inefficient. In this paper, we synthesized six types of high-entropy transition metal diborides based on VB2, NbB2, and TaB2 by high-temperature and high-pressure solid-state reactions at 5.5 GPa and 2300 °C. The high pressure promoted the efficiency of solid-state reaction and facilitated the synthesis of high-entropy transition metal diborides. The X-ray diffraction and energy dispersive X-ray spectroscopy results have been confirmed that the six types of high-entropy transition metal diborides possessed pure phase compositions without oxide impurities or second phases, and exhibited uniform elemental distribution without elemental segregation. These results demonstrate that the synthesis of high-entropy transition metal diborides by using high-temperature and high-pressure solid-state reaction method is effectiveness and practicality. -
表 1 高熵过渡金属二硼化物的主峰峰位
Table 1. Main peak position of high-entropy transition metal diborides
Sample High-entropy transition metal diborides Peak position/(°) (001) (100) (101) HEDB-1 (V0.2Ta0.2Cr0.2Nb0.2Ti0.2)B2 27.7 34.1 44.4 HEDB-2 (V0.2Ta0.2Mo0.2Nb0.2Ti0.2)B2 27.5 33.7 44.1 HEDB-3 (V0.2Ta0.2W0.2Nb0.2Ti0.2)B2 27.6 33.8 44.2 HEDB-4 (V0.2Nb0.2Ta0.2Cr0.2Mo0.2)B2 27.6 34.0 44.3 HEDB-5 (V0.2Nb0.2Ta0.2Cr0.2W0.2)B2 27.7 34.0 44.4 HEDB-6 (V0.2Nb0.2Ta0.2Mo0.2W0.2)B2 27.9 33.8 44.4 -
[1] OSES C, TOHER C, CURTAROLO S. High-entropy ceramics [J]. Nature Reviews Materials, 2020, 5(4): 295–309. doi: 10.1038/s41578-019-0170-8 [2] HE Q F, WANG J G, CHEN H A, et al. A highly distorted ultraelastic chemically complex Elinvar alloy [J]. Nature, 2022, 602(7896): 251–257. doi: 10.1038/s41586-021-04309-1 [3] ZHANG X L, LI W W, TIAN H, et al. Ultra-incompressible high-entropy diborides [J]. The Journal of Physical Chemistry Letters, 2021, 12(12): 3106–3113. doi: 10.1021/acs.jpclett.1c00399 [4] 徐亮, 王红洁, 苏磊. 高熵陶瓷研究进展 [J]. 宇航材料工艺, 2021, 51(1): 1–9. doi: 10.12044/j.issn.1007-2330.2021.01.001XU L, WANG H J, SU L. Progress in research on high-entropy ceramics [J]. Aerospace Materials & Technology, 2021, 51(1): 1–9. doi: 10.12044/j.issn.1007-2330.2021.01.001 [5] 陈磊, 王恺, 苏文韬, 等. 过渡金属非氧化物高熵陶瓷的研究进展 [J]. 无机材料学报, 2020, 35(7): 748–758. doi: 10.15541/jim20190408CHEN L, WANG K, SU W T, et al. Research progress of transition metal non-oxide high-entropy ceramics [J]. Journal of Inorganic Materials, 2020, 35(7): 748–758. doi: 10.15541/jim20190408 [6] 张伟明, 向会敏, 戴付志, 等. 高熵陶瓷: 吸波材料设计新策略 [J]. 宇航材料工艺, 2022, 52(2): 13–25. doi: 10.12044/j.issn.1007-2330.2022.02.002ZHANG W M, XIANG H M, DAI F Z, et al. High-entropy ceramics: a new strategy for electromagnetic wave absorbing materials [J]. Aerospace Materials & Technology, 2022, 52(2): 13–25. doi: 10.12044/j.issn.1007-2330.2022.02.002 [7] WEN Z H, TANG Z Y, LIU Y W, et al. Ultrastrong and high thermal insulating porous high-entropy ceramics up to 2000 ℃ [J]. Advanced Materials, 2024, 36(14): 2311870. doi: 10.1002/ADMA.202311870 [8] GILD J, ZHANG Y Y, HARRINGTON T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics [J]. Scientific Reports, 2016, 6: 37946. doi: 10.1038/srep37946 [9] LIU D, LIU H H, NING S S, et al. Synthesis of high-purity high-entropy metal diboride powders by boro/carbothermal reduction [J]. Journal of the American Ceramic Society, 2019, 102(12): 7071–7076. doi: 10.1111/jace.16746 [10] MURCHIE A C, WATTS J L, FAHRENHOLTZ W G, et al. Room-temperature mechanical properties of a high-entropy diboride [J]. International Journal of Applied Ceramic Technology, 2022, 19(4): 2293–2299. doi: 10.1111/ijac.14026 [11] TALLARITA G, LICHERI R, GARRONI S, et al. Novel processing route for the fabrication of bulk high-entropy metal diborides [J]. Scripta Materialia, 2019, 158: 100–104. doi: 10.1016/j.scriptamat.2018.08.039 [12] ZHANG Y, SUN S K, ZHANG W, et al. Improved densification and hardness of high-entropy diboride ceramics from fine powders synthesized via borothermal reduction process [J]. Ceramics International, 2020, 46(9): 14299–14303. doi: 10.1016/j.ceramint.2020.02.214 [13] ZHANG Y, GUO W M, JIANG Z B, et al. Dense high-entropy boride ceramics with ultra-high hardness [J]. Scripta Materialia, 2019, 164: 135–139. doi: 10.1016/j.scriptamat.2019.01.021 [14] FENG L, FAHRENHOLTZ W G, HILMAS G E. Two-step synthesis process for high-entropy diboride powders [J]. Journal of the American Ceramic Society, 2020, 103(2): 724–730. doi: 10.1111/jace.16801 [15] GU J F, ZOU J, SUN S K, et al. Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via boro/carbothermal reduction approach [J]. Science China Materials, 2019, 62(12): 1898–1909. doi: 10.1007/s40843-019-9469-4 [16] LIU D, WEN T Q, YE B L, et al. Synthesis of superfine high-entropy metal diboride powders [J]. Scripta Materialia, 2019, 167: 110–114. doi: 10.1016/j.scriptamat.2019.03.038 [17] SHEN X Q, LIU J X, LI F, et al. Preparation and characterization of diboride-based high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-SiC particulate composites [J]. Ceramics International, 2019, 45(18): 24508–24514. doi: 10.1016/j.ceramint.2019.08.178 [18] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017, 122: 448–511. doi: 10.1016/j.actamat.2016.08.081