高熵过渡金属二硼化物的高温高压合成

龙海东 陈杰 肖雄 彭放

龙海东, 陈杰, 肖雄, 彭放. 高熵过渡金属二硼化物的高温高压合成[J]. 高压物理学报, 2024, 38(6): 063101. doi: 10.11858/gywlxb.20240790
引用本文: 龙海东, 陈杰, 肖雄, 彭放. 高熵过渡金属二硼化物的高温高压合成[J]. 高压物理学报, 2024, 38(6): 063101. doi: 10.11858/gywlxb.20240790
LONG Haidong, CHEN Jie, XIAO Xiong, PENG Fang. High-Temperature and High-Pressure Synthesis of High-Entropy Transition Metal Diborides[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 063101. doi: 10.11858/gywlxb.20240790
Citation: LONG Haidong, CHEN Jie, XIAO Xiong, PENG Fang. High-Temperature and High-Pressure Synthesis of High-Entropy Transition Metal Diborides[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 063101. doi: 10.11858/gywlxb.20240790

高熵过渡金属二硼化物的高温高压合成

doi: 10.11858/gywlxb.20240790
基金项目: 国家自然科学基金(12074273)
详细信息
    作者简介:

    龙海东(1998-),男,硕士研究生,主要从事高压科学与凝聚态物理研究. E-mail:shen5149p@163.com

    通讯作者:

    彭 放(1960-),男,博士,教授,主要从事高压科学与凝聚态物理研究. E-mail:pengfang@scu.edu.cn

  • 中图分类号: O521.2

High-Temperature and High-Pressure Synthesis of High-Entropy Transition Metal Diborides

  • 摘要: 高熵过渡金属二硼化物因其优异的力学性能及热物理性能受到了人们的广泛关注。然而,过去通过高温固相反应合成的效率较低。为此,通过高温高压固相反应,在5.5 GPa、2300 ℃的温压条件下合成了以VB2、NbB2、TaB2为基底的6类高熵过渡金属二硼化物。高压提高了高温下的固相反应效率,促进了高熵过渡金属二硼化物的合成。通过X射线衍射和能量色散X射线光谱仪表征并确认了6类高熵过渡金属二硼化物均由纯相组成,不存在氧化物杂质或第二相,且元素分布均匀,不存在元素偏析,证明了高温高压合成高熵过渡金属二硼化物的有效性和普适性。

     

  • 图  标A和标Z组装示意图

    Figure  1.  Schematic diagram of standard A and standard Z assembles

    图  高温高压合成工艺曲线

    Figure  2.  High-temperature and high-pressure process curves

    图  (a) HEDB-1的前驱体及各单组元二硼化物样品的XRD谱,(b) 5.5 GPa、16002300 ℃条件下HEDB-1 的XRD谱

    Figure  3.  (a) XRD patterns of the mixing precursor powder of HEDB-1 and the single diborides powder contented in HEDB-1;(b) XRD patterns of HEDB-1 synthesized at 5.5 GPa, 16002300

    图  在5.5 GPa、16002300 ℃条件下采用高温高压法合成的HEDB-1 样品的EDS

    Figure  4.  EDS of HEDB-1 synthesized via high-temperature and high-pressure processing under conditions of 5.5 GPa and temperatures ranging from 1600 ℃ to 2300 °C

    图  在5.5 GPa、2300 ℃下由高温高压法合成的样品HEDB-1~HEDB-6的XRD谱

    Figure  5.  XRD patterns of sample HEDB-1−HEDB-6 synthesized via high-temperature and high-pressure processing under conditions of 5.5 GPa and 2300 °C

    图  在5.5 GPa、2300 ℃条件下采用高温高压法合成的样品HEDB-1~HEDB-6的EDS

    Figure  6.  EDS of sample HEDB-1−HEDB-6 synthesized via high-temperature and high-pressure processing under conditions of 5.5 GPa and 2300 °C

    表  1  高熵过渡金属二硼化物的主峰峰位

    Table  1.   Main peak position of high-entropy transition metal diborides

    SampleHigh-entropy transition metal diboridesPeak position/(°)
    (001)(100)(101)
    HEDB-1(V0.2Ta0.2Cr0.2Nb0.2Ti0.2)B227.734.144.4
    HEDB-2(V0.2Ta0.2Mo0.2Nb0.2Ti0.2)B227.533.744.1
    HEDB-3(V0.2Ta0.2W0.2Nb0.2Ti0.2)B227.633.844.2
    HEDB-4(V0.2Nb0.2Ta0.2Cr0.2Mo0.2)B227.634.044.3
    HEDB-5(V0.2Nb0.2Ta0.2Cr0.2W0.2)B227.734.044.4
    HEDB-6(V0.2Nb0.2Ta0.2Mo0.2W0.2)B227.933.844.4
    下载: 导出CSV
  • [1] OSES C, TOHER C, CURTAROLO S. High-entropy ceramics [J]. Nature Reviews Materials, 2020, 5(4): 295–309. doi: 10.1038/s41578-019-0170-8
    [2] HE Q F, WANG J G, CHEN H A, et al. A highly distorted ultraelastic chemically complex Elinvar alloy [J]. Nature, 2022, 602(7896): 251–257. doi: 10.1038/s41586-021-04309-1
    [3] ZHANG X L, LI W W, TIAN H, et al. Ultra-incompressible high-entropy diborides [J]. The Journal of Physical Chemistry Letters, 2021, 12(12): 3106–3113. doi: 10.1021/acs.jpclett.1c00399
    [4] 徐亮, 王红洁, 苏磊. 高熵陶瓷研究进展 [J]. 宇航材料工艺, 2021, 51(1): 1–9. doi: 10.12044/j.issn.1007-2330.2021.01.001

    XU L, WANG H J, SU L. Progress in research on high-entropy ceramics [J]. Aerospace Materials & Technology, 2021, 51(1): 1–9. doi: 10.12044/j.issn.1007-2330.2021.01.001
    [5] 陈磊, 王恺, 苏文韬, 等. 过渡金属非氧化物高熵陶瓷的研究进展 [J]. 无机材料学报, 2020, 35(7): 748–758. doi: 10.15541/jim20190408

    CHEN L, WANG K, SU W T, et al. Research progress of transition metal non-oxide high-entropy ceramics [J]. Journal of Inorganic Materials, 2020, 35(7): 748–758. doi: 10.15541/jim20190408
    [6] 张伟明, 向会敏, 戴付志, 等. 高熵陶瓷: 吸波材料设计新策略 [J]. 宇航材料工艺, 2022, 52(2): 13–25. doi: 10.12044/j.issn.1007-2330.2022.02.002

    ZHANG W M, XIANG H M, DAI F Z, et al. High-entropy ceramics: a new strategy for electromagnetic wave absorbing materials [J]. Aerospace Materials & Technology, 2022, 52(2): 13–25. doi: 10.12044/j.issn.1007-2330.2022.02.002
    [7] WEN Z H, TANG Z Y, LIU Y W, et al. Ultrastrong and high thermal insulating porous high-entropy ceramics up to 2000 ℃ [J]. Advanced Materials, 2024, 36(14): 2311870. doi: 10.1002/ADMA.202311870
    [8] GILD J, ZHANG Y Y, HARRINGTON T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics [J]. Scientific Reports, 2016, 6: 37946. doi: 10.1038/srep37946
    [9] LIU D, LIU H H, NING S S, et al. Synthesis of high-purity high-entropy metal diboride powders by boro/carbothermal reduction [J]. Journal of the American Ceramic Society, 2019, 102(12): 7071–7076. doi: 10.1111/jace.16746
    [10] MURCHIE A C, WATTS J L, FAHRENHOLTZ W G, et al. Room-temperature mechanical properties of a high-entropy diboride [J]. International Journal of Applied Ceramic Technology, 2022, 19(4): 2293–2299. doi: 10.1111/ijac.14026
    [11] TALLARITA G, LICHERI R, GARRONI S, et al. Novel processing route for the fabrication of bulk high-entropy metal diborides [J]. Scripta Materialia, 2019, 158: 100–104. doi: 10.1016/j.scriptamat.2018.08.039
    [12] ZHANG Y, SUN S K, ZHANG W, et al. Improved densification and hardness of high-entropy diboride ceramics from fine powders synthesized via borothermal reduction process [J]. Ceramics International, 2020, 46(9): 14299–14303. doi: 10.1016/j.ceramint.2020.02.214
    [13] ZHANG Y, GUO W M, JIANG Z B, et al. Dense high-entropy boride ceramics with ultra-high hardness [J]. Scripta Materialia, 2019, 164: 135–139. doi: 10.1016/j.scriptamat.2019.01.021
    [14] FENG L, FAHRENHOLTZ W G, HILMAS G E. Two-step synthesis process for high-entropy diboride powders [J]. Journal of the American Ceramic Society, 2020, 103(2): 724–730. doi: 10.1111/jace.16801
    [15] GU J F, ZOU J, SUN S K, et al. Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via boro/carbothermal reduction approach [J]. Science China Materials, 2019, 62(12): 1898–1909. doi: 10.1007/s40843-019-9469-4
    [16] LIU D, WEN T Q, YE B L, et al. Synthesis of superfine high-entropy metal diboride powders [J]. Scripta Materialia, 2019, 167: 110–114. doi: 10.1016/j.scriptamat.2019.03.038
    [17] SHEN X Q, LIU J X, LI F, et al. Preparation and characterization of diboride-based high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-SiC particulate composites [J]. Ceramics International, 2019, 45(18): 24508–24514. doi: 10.1016/j.ceramint.2019.08.178
    [18] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017, 122: 448–511. doi: 10.1016/j.actamat.2016.08.081
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  66
  • PDF下载量:  32
出版历程
  • 收稿日期:  2024-04-15
  • 修回日期:  2024-05-10
  • 网络出版日期:  2024-07-08
  • 刊出日期:  2024-12-05

目录

    /

    返回文章
    返回