不同波形加载下[100]单晶铝层裂破坏的分子动力学模拟研究

杨向阳 吴楯 祝有麟 李俊国 张睿智 张建 罗国强

杨向阳, 吴楯, 祝有麟, 李俊国, 张睿智, 张建, 罗国强. 不同波形加载下[100]单晶铝层裂破坏的分子动力学模拟研究[J]. 高压物理学报, 2024, 38(3): 030106. doi: 10.11858/gywlxb.20240786
引用本文: 杨向阳, 吴楯, 祝有麟, 李俊国, 张睿智, 张建, 罗国强. 不同波形加载下[100]单晶铝层裂破坏的分子动力学模拟研究[J]. 高压物理学报, 2024, 38(3): 030106. doi: 10.11858/gywlxb.20240786
YANG Xiangyang, WU Dun, ZHU Youlin, LI Junguo, ZHANG Ruizhi, ZHANG Jian, LUO Guoqiang. Molecular Dynamics Simulation Study on Spallation Failure of [100] Single Crystal Aluminum under Different Waveform Loadings[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030106. doi: 10.11858/gywlxb.20240786
Citation: YANG Xiangyang, WU Dun, ZHU Youlin, LI Junguo, ZHANG Ruizhi, ZHANG Jian, LUO Guoqiang. Molecular Dynamics Simulation Study on Spallation Failure of [100] Single Crystal Aluminum under Different Waveform Loadings[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030106. doi: 10.11858/gywlxb.20240786

不同波形加载下[100]单晶铝层裂破坏的分子动力学模拟研究

doi: 10.11858/gywlxb.20240786
基金项目: 国家自然科学基金(51932006);湖北省技术创新专项重大项目(2019AFA176)
详细信息
    作者简介:

    杨向阳(2000-),男,硕士研究生,主要从事单晶层裂的分子动力学模拟研究. E-mail:331159@whut.edu.cn

    通讯作者:

    张睿智(1991-),男,博士,助理研究员,主要从事阻抗梯度飞片设计与制备技术研究.E-mail:zhangrz027@163.com

    张 建(1984-),男,博士,研究员,博士生导师,主要从事阻抗梯度飞片设计与制备技术研究.E-mail:zhangjian178@whut.edu.cn

  • 中图分类号: O347.1; O521.2

Molecular Dynamics Simulation Study on Spallation Failure of [100] Single Crystal Aluminum under Different Waveform Loadings

  • 摘要: 采用分子动力学方法模拟了[100]单晶铝在等冲量斜波和方波作用下的形变和层裂行为,分析了加载波形与层裂行为之间的相关性。研究表明,脉冲形状与热力学路径的协同作用影响了材料层裂。不同加载波形下单晶铝层裂强度的差异并非受缺陷主导的非均匀孔洞形核影响,而是由不同热力学路径下温升的差异决定。例如:当最大加载速度为3.00 km/s时,单晶铝均经历均匀层裂,但斜波加载下铝的层裂强度较方波加载时提升56.6%。斜波加载会产生逐渐增强的压缩波,使单晶铝产生相比于冲击加载更轻度的损伤。这一现象随着加载速度的提高而变得更加显著。

     

  • 图  (a)活塞法生成层裂示意图,(b) 载荷时程曲线

    Figure  1.  (a) Schematic diagram of spallation generation by piston method; (b) loading history curves

    图  层裂强度(整体法)对最大速度和脉冲形状的依赖性

    Figure  2.  Dependence of spall strength (from bulk) on the maximum velocity and pulse shape

    图  层裂强度(自由面法)对最大速度和脉冲形状的依赖性

    Figure  3.  Dependence of spall strength (from surface) on the maximum velocity and pulse shape

    图  2种方法得到的层裂强度的对比

    Figure  4.  Comparison of spall strengths obtained by two methods

    图  外加拉伸应变率与层裂温度及脉冲形状的关系

    Figure  5.  Dependency of applied tensile strain rate on spall temperature and pulse shape

    图  实验[2631]和模拟得到的层裂强度随应变率的变化

    Figure  6.  Variation of the spall strength with strain rate in experiments[2631] and this simulation

    图  层裂强度与层裂面温度的关系

    Figure  7.  Relationship between spall strength and temperature on the spall plane

    图  应力波抵达自由表面时系统的原子构型

    Figure  8.  Atomic configuration of the system when the stress wave reaches the free surface

    图  vp 为1.00和2.00 km/s时方波和斜波组中σxx的位置-时间(x-t)图

    Figure  9.  Position of σxx versus time (x-t) diagrams when vp is 1.00 and 2.00 km/s under square wave and ramp wave loading

    图  10  选定切片原子的应变率-时间曲线

    Figure  10.  Time history of strain rate for selected slice atoms

    图  11  vp 为1.25和1.50 km/s时斜波组层裂面上的缺陷结构随时间的演化

    Figure  11.  Time evolution of corresponding defect structure on the spall plane when vp is 1.25 and 1.50 km/s under ramp wave loading

    图  12  斜波和方波加载下空洞数量和损伤比的演变历程

    Figure  12.  Evolution history of void number and damage ratio under square wave and ramp wave loading

    表  1  不同工况下的层裂强度、应变速率和层裂温度

    Table  1.   Spall strength, strain rate, and spall temperature of different cases

    Group vp/(km·s−1) σsp/GPa $ \dot{\varepsilon }$/(109 s−1) Tsp/K
    From bulk From surface
    Ramp wave 1.00 9.748 8.536 1.864 223.82
    1.25 8.814 7.528 2.350 272.24
    1.50 9.847 7.851 2.983 224.95
    1.75 9.941 8.678 3.282 227.39
    2.00 10.084 8.233 3.664 230.75
    2.25 10.358 7.546 4.123 233.08
    2.50 10.321 7.077 4.556 236.06
    2.75 10.308 6.764 4.855 236.80
    3.00 10.261 6.325 5.284 239.73
    Square wave 1.00 8.180 7.725 2.287 333.47
    1.25 8.228 7.151 2.477 313.84
    1.50 9.511 8.646 2.670 291.85
    1.75 9.227 8.282 3.263 350.29
    2.00 8.689 7.578 3.611 404.72
    2.25 7.977 7.039 4.055 494.94
    2.50 7.293 6.809 4.461 561.94
    2.75 6.900 6.518 4.901 579.97
    3.00 6.551 6.135 5.312 594.51
    下载: 导出CSV
  • [1] LI C, LI B, HUANG J Y, et al. Spall damage of a mild carbon steel: effects of peak stress, strain rate and pulse duration [J]. Materials Science and Engineering: A, 2016, 660: 139–147. doi: 10.1016/j.msea.2016.02.080
    [2] LI C, YANG K, TANG X C, et al. Spall strength of a mild carbon steel: effects of tensile stress history and shock-induced microstructure [J]. Materials Science and Engineering: A, 2019, 754: 461–469. doi: 10.1016/j.msea.2019.03.019
    [3] NGUYEN T, LUSCHER D J, WILKERSON J W. A physics-based model and simple scaling law to predict the pressure dependence of single crystal spall strength [J]. Journal of the Mechanics and Physics of Solids, 2020, 137: 103875. doi: 10.1016/j.jmps.2020.103875
    [4] LI C, YANG K, GAO Y H, et al. Dislocation-dominated void nucleation in shock-spalled single crystal copper: mechanism and anisotropy [J]. International Journal of Plasticity, 2022, 155: 103331. doi: 10.1016/j.ijplas.2022.103331
    [5] REMINGTON T P, HAHN E N, ZHAO S, et al. Spall strength dependence on grain size and strain rate in tantalum [J]. Acta Materialia, 2018, 158: 313–329. doi: 10.1016/j.actamat.2018.07.048
    [6] PANG B, CASE S, JONES I P, et al. The defect evolution in shock loaded tantalum single crystals [J]. Acta Materialia, 2018, 148: 482–491. doi: 10.1016/j.actamat.2017.11.052
    [7] HAHN E N, FENSIN S J, GERMANN T C, et al. Orientation dependent spall strength of tantalum single crystals [J]. Acta Materialia, 2018, 159: 241–248. doi: 10.1016/j.actamat.2018.07.073
    [8] DONGARE A M, LAMATTINA B, RAJENDRAN A M. Atomic scale studies of spall behavior in single crystal Cu [J]. Procedia Engineering, 2011, 10: 3636–3641. doi: 10.1016/j.proeng.2011.04.598
    [9] MACKENCHERY K, VALISETTY R R, NAMBURU R R, et al. Dislocation evolution and peak spall strengths in single crystal and nanocrystalline Cu [J]. Journal of Applied Physics, 2016, 119(4): 044301. doi: 10.1063/1.4939867
    [10] MA K, CHEN J, DONGARE A M. Role of pre-existing dislocations on the shock compression and spall behavior in single-crystal copper at atomic scales [J]. Journal of Applied Physics, 2021, 129(17): 175901. doi: 10.1063/5.0040802
    [11] WANG J, WANG F, ZENG X G, et al. Unraveling the plasticity performance and melting in single crystal tantalum damaged by shock compression [J]. Engineering Fracture Mechanics, 2022, 276: 108921. doi: 10.1016/J.ENGFRACMECH.2022.108921
    [12] KRASNIKOV V S, MAYER A E. Plasticity driven growth of nanovoids and strength of aluminum at high rate tension: molecular dynamics simulations and continuum modeling [J]. International Journal of Plasticity, 2015, 74: 75–91. doi: 10.1016/j.ijplas.2015.06.007
    [13] ZHOU T T, HE A M, WANG P, et al. Spall damage in single crystal Al with helium bubbles under decaying shock loading via molecular dynamics study [J]. Computational Materials Science, 2019, 162: 255–267. doi: 10.1016/j.commatsci.2019.02.019
    [14] TANG F, JIAN Z Y, XIAO S F, et al. Molecular dynamics simulation of cylindrically converging shock response in single crystal Cu [J]. Computational Materials Science, 2020, 183: 109845. doi: 10.1016/j.commatsci.2020.109845
    [15] XIONG Q L, KITAMURA T, LI Z H. Cylindrical voids induced deformation response of single crystal coppers during low-speed shock compressions: a molecular dynamics study [J]. Mechanics of Materials, 2019, 138: 103167. doi: 10.1016/j.mechmat.2019.103167
    [16] TIAN X, CUI J Z, MA K P, et al. Shock-induced plasticity and damage in single-crystalline Cu at elevated temperatures by molecular dynamics simulations [J]. International Journal of Heat and Mass Transfer, 2020, 158: 120013. doi: 10.1016/j.ijheatmasstransfer.2020.120013
    [17] LIAO Y, XIANG M Z, ZENG X G, et al. Molecular dynamics studies of the roles of microstructure and thermal effects in spallation of aluminum [J]. Mechanics of Materials, 2015, 84: 12–27. doi: 10.1016/j.mechmat.2015.01.007
    [18] HAWKINS M C, THOMAS S A, FENSIN S J, et al. Spall and subsequent recompaction of copper under shock loading [J]. Journal of Applied Physics, 2020, 128(4): 045901. doi: 10.1063/5.0011645
    [19] ZHU Y L, HU J N, WEI Q Q, et al. Enhanced spall strength of single crystal aluminum by temperature rise mitigation and structural phase transition under shock pulse [J]. Mechanics of Materials, 2023, 186: 104809. doi: 10.1016/j.mechmat.2023.104809
    [20] 黄海军, 沈强, 罗国强, 等. 利用多层阻抗梯度飞片产生准等熵压缩的理论解析 [J]. 物理学报, 2007, 56(3): 1538–1542. doi: 10.3321/j.issn:1000-3290.2007.03.050

    HUANG H J, SHEN Q, LUO G Q, et al. Theoritical analysis of quasi-isentropic compression via flier-plate with grade wave impadence [J]. Acta Physica Sinica, 2007, 56(3): 1538–1542. doi: 10.3321/j.issn:1000-3290.2007.03.050
    [21] ZHU Y L, HU J N, HUANG S L, et al. Molecular dynamics simulation on spallation of [111] Cu/Ni nano-multilayers: voids evolution under different shock pulse duration [J]. Computational Materials Science, 2022, 202: 110923. doi: 10.1016/J.COMMATSCI.2021.110923
    [22] ZHAKHOVSKII V V, INOGAMOV N A, PETROV Y V, et al. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials [J]. Applied Surface Science, 2009, 255(24): 9592–9596. doi: 10.1016/j.apsusc.2009.04.082
    [23] JIANG D D, SHAO J L, WU B, et al. Sudden change of spall strength induced by shock defects based on atomistic simulation of single crystal aluminum [J]. Scripta Materialia, 2022, 210: 114474. doi: 10.1016/j.scriptamat.2021.114474
    [24] KADAU K, GERMANN T C, LOMDAHL P S, et al. Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals [J]. Physical Review B, 2005, 72(6): 064120. doi: 10.1103/PhysRevB.72.064120
    [25] SRINIVASAN S G, BASKES M I, WAGNER G J. Atomistic simulations of shock induced microstructural evolution and spallation in single crystal nickel [J]. Journal of Applied Physics, 2007, 101(4): 043504. doi: 10.1063/1.2423084
    [26] ASHITKOV S I, AGRANAT M B, KANEL’ G I, et al. Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses [J]. JETP Letters, 2010, 92(8): 516–520. doi: 10.1134/S0021364010200051
    [27] ELIEZER S, MOSHE E, ELIEZER D, et al. Laser-induced tension to measure the ultimate strength of metals related to the equation of state [J]. Laser and Particle Beams, 2002, 20(1): 87–92. doi: 10.1017/S0263034602201123
    [28] GARKUSHIN G V, KANEL G I, RAZORENOV S V, et al. Resistance to deformation and fracture of aluminum AD1 under shock-wave loading at temperatures of 20 and 600 ℃ [J]. Physics of The Solid State, 2010, 52(11): 2369–2375. doi: 10.1134/S1063783410110247
    [29] KANEL G I, RAZORENOV S V, GRADY D E, et al. Spall fracture properties of aluminum and magnesium at high temperatures [J]. Journal of Applied Physics, 1996, 79(11): 8310–8317. doi: 10.1063/1.362542
    [30] RAZORENOV S V, KANEL G I, FORTOV V E, et al. Submicrosecond strength of aluminum and alloy AMg6M at normal and elevated temperatures [J]. Fizika Metallov Ⅰ Metallovedenie, 2003, 95(1): 91–96.
    [31] KANEL G I, RAZORENOV S V, SINGER J, et al. Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point [J]. Journal of Applied Physics, 2001, 90(1): 136–143. doi: 10.1063/1.1374478
    [32] STRACHAN A, ÇAĞIN T, GODDARD Ⅲ W A. Critical behavior in spallation failure of metals [J]. Physical Review B, 2001, 63(6): 060103. doi: 10.1103/PhysRevB.63.060103
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  48
  • PDF下载量:  43
出版历程
  • 收稿日期:  2024-04-09
  • 修回日期:  2024-04-28
  • 网络出版日期:  2024-05-23
  • 刊出日期:  2024-06-03

目录

    /

    返回文章
    返回