内爆炸载荷下双向波纹夹芯管的动力响应及抗爆性能预测

唐波 李子豪 刘志芳 李世强

唐波, 李子豪, 刘志芳, 李世强. 内爆炸载荷下双向波纹夹芯管的动力响应及抗爆性能预测[J]. 高压物理学报, 2024, 38(6): 064203. doi: 10.11858/gywlxb.20240782
引用本文: 唐波, 李子豪, 刘志芳, 李世强. 内爆炸载荷下双向波纹夹芯管的动力响应及抗爆性能预测[J]. 高压物理学报, 2024, 38(6): 064203. doi: 10.11858/gywlxb.20240782
TANG Bo, LI Zihao, LIU Zhifang, LI Shiqiang. Blast Resistance and Prediction of Bi-Directional Corrugated Sandwich Tubes under Internal Blast Loading[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064203. doi: 10.11858/gywlxb.20240782
Citation: TANG Bo, LI Zihao, LIU Zhifang, LI Shiqiang. Blast Resistance and Prediction of Bi-Directional Corrugated Sandwich Tubes under Internal Blast Loading[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064203. doi: 10.11858/gywlxb.20240782

内爆炸载荷下双向波纹夹芯管的动力响应及抗爆性能预测

doi: 10.11858/gywlxb.20240782
基金项目: 国家自然科学基金(12072219,12272254);山西省自然科学研究面上项目(202203021211170);海安太原理工大学先进制造与智能装备产业研究院开放研发项目(2023HA-TYUTKFYF016);山西省科技创新人才团队(领军)专项(202204051002006);爆炸科学与安全防护全国重点实验室(北京理工大学)开放课题(KFJJ24-03M)
详细信息
    作者简介:

    唐 波(1999-),男,硕士研究生,主要从事轻质结构冲击动力学行为研究. E-mail:tb15881862576@163.com

    通讯作者:

    李世强(1986-),男,博士,副教授,主要从事结构冲击动力学研究. E-mail:lishiqiang@tyut.edu.cn

  • 中图分类号: O347.1; O521.9

Blast Resistance and Prediction of Bi-Directional Corrugated Sandwich Tubes under Internal Blast Loading

  • 摘要: 受孔雀螳螂虾前鄂抗冲击区结构启发,设计并制备了双向波纹夹芯管结构,采用实验和数值模拟相结合的方法研究了其在内爆炸载荷下的动态响应及能量吸收机制。实验获得了结构的外管中点最大挠度和3种典型变形模式:局部塑性变形、塑性大变形以及撕裂破坏。内外管中点最大挠度和结构最终变形模态的数值模拟结果与实验结果吻合较好。通过数值模拟研究了芯层波纹数、内外管壁厚以及炸药质量对外管中点最大挠度和能量吸收特性的影响,结果表明:随着波纹数增大,结构比吸能先增大后减小;增大内管壁厚和减小外管壁厚能有效地提高结构的抗爆性能,当结构内管壁厚为2.5 mm、外管壁厚为1.5 mm时,相比于内管壁厚为1.5 mm、外管壁厚为2.5 mm时,外管中点最大挠度降低了67.6%,质量降低了6.0%;随着TNT当量的增加,内管吸收的能量占比逐渐下降,而芯层和外管吸收的能量占比增加。建立了BP(back propagation)神经网络模型、PSO-BP(particle swarm optimization-back propagation)神经网络模型以及响应面分析模型,分别对结构的比吸能与外管中点最大挠度进行预测,优化了所提出的结构。

     

  • 图  (a) 螳螂虾的CT扫描图像[18],(b) 冲击区[18],(c) 冲击区的宏观微观结构[18],(d) 夹芯管示意图

    Figure  1.  (a) CT image of mantis shrimp[18]; (b) impact zone[18]; (c) macroscopic and microscopic structure of shrimp claws[18]; (d) schematic diagram of sandwich tube

    图  3种波纹芯层示意图

    Figure  2.  Schematic diagram of three types of corrugated core

    图  实验装置示意图

    Figure  3.  Schematic diagram of experimental setup

    图  双向波纹管内外管变形图

    Figure  4.  Deformation diagram of inner and outer tubes of bidirectional bellows

    图  内部爆炸载荷下双向波纹夹芯管的实验结果

    Figure  5.  Experimental results of bi-directionally corrugated sandwich tubes under inner blast loading

    图  应力-应变曲线

    Figure  6.  Stress-strain curves

    图  R4A2试件的数值模拟与实验变形模态对比

    Figure  7.  Comparison of the deformation modes between the simulation and experimental results of R4A2

    图  不同波纹夹芯管的抗爆性能对比

    Figure  8.  Comparison of the blast resistance for different corrugated sandwich tubes

    图  不同波纹数的双向波纹夹芯管的抗爆性能

    Figure  9.  Blast resistance of bi-directional corrugated sandwich tubes with different corrugation numbers

    图  10  不同内外管厚度下R5A5结构的抗爆性能

    Figure  10.  Blast resistance of R5A5 structure with different thicknesses of inner and outer tubes

    图  11  不同TNT当量下R5A5的抗爆性能

    Figure  11.  Blast resistance of R5A5 under different equivalent TNT dosage

    图  12  BP神经网络模型

    Figure  12.  BP neural network structure diagram

    图  13  粒子群优化神经网络算法流程

    Figure  13.  Flow chart of particle swarm optimization neural network algorithm

    图  14  预测结果对比:(a) SEA的BP预测与FE结果比较,(b) MD的BP预测与FE结果比较,(c) SEA的PSO-BP预测与FE结果比较,(d) MD的PSO-BP预测与FE结果比较,(e) SEA的RSM预测与FE结果比较,(f) MD的RSM预测与FE结果比较

    Figure  14.  Comparison of predicted results: (a) comparison of BP prediction with FE results of SEA; (b) comparison of BP prediction with FE results of MD; (c) comparison of PSO-BP prediction with FE results of SEA; (d) comparison of PSO-BP prediction with FE results of MD; (e) comparison of RSM prediction with FE results of SEA; (f) comparison of RSM prediction with FE results of MD

    图  15  RSM生成的样本点与对照组的动态响应

    Figure  15.  Dynamic responses of the sample nodes by RSM and the control group

    表  1  材料参数

    Table  1.   Material parameters

    MaterialDensity/(kg∙m−3)Young’s modulus/GPaPoisson’s ratioYield stress/MPa
    316L steel78301850.30470
    304 steel78301930.25250
    下载: 导出CSV

    表  2  双向波纹夹芯管的变形/失效实验测定值

    Table  2.   Deformation/failure test values of bidirectional bellows sandwich tube

    Sample $ {\varepsilon _h} $/% $ l $/mm cl/mm cw/mm
    Inner tube Outer tube Inner tube Outer tube Inner tube crack Core crack Outer tube crack Inner tube crack Core crack Outer tube crack
    A2 4.1 2.6 85 48
    R4 5.1 2.1 112 30 46 0.3
    R4A2 4.6 2.6 127 40 76 57 14 3
    R5A2 4.6 3.1 145 64 80 72 11 5
    下载: 导出CSV

    表  3  内外管中点挠度的数值模拟与实验结果的对比

    Table  3.   Comparison between numerical simulation and experimental results for mid-point deflection of inner and outer tubes

    Sample R A ti/mm to/mm MD for inner tube MD for outer tube
    Sim./mm Exp./mm Error/% Sim./mm Exp./mm Error/%
    A2 0 2 2 2 10.8 11.2 3.7 4.9 4.6 −6.1
    R4 4 0 2 2 11.8 12.0 1.7 6.0 5.6 −6.7
    R4A2 4 2 2 2 15.2 14.0 −7.9 5.5 5.0 −8.2
    R5A2 5 2 2 2 18.8 18.0 −4.2 9.5 8.5 −10.5
    下载: 导出CSV

    表  4  计算模型数与CPU计算时间

    Table  4.   Calculated model number and CPU calculation time

    Model Number of CPU* Number of meshes Calculation time/min
    k=50 k=100 k=200 k=500 k=1000
    FE 8 55850 475 950 1 900 4750 9500
    BP 2 950 951 952 954 958
    PSO-BP 2 954 959 968 996 1042
    RSM 2 950 950 951 954 957
    Note: * Intel (R) Core (TM) i7-13700 2.10 GHz
    下载: 导出CSV

    表  5  预测模型误差分析

    Table  5.   Error analysis of prediction models

    Model $ {\theta _{{\text{relative}}}} $/% $ {\theta _{{\text{average}}}} $/% $ {R^2} $
    SEA MD SEA MD SEA MD
    BP 2.05 33.2 0.48 6.65 0.999 0.975
    PSO-BP 2.15 28.3 0.35 3.52 0.999 0.994
    RSM 0.97 22.1 0.25 0.24 0.999 0.996
    下载: 导出CSV

    表  6  最大$M_{\mathrm{D}}$约束下最大化$S_{\mathrm{EA}} $的优化设计

    Table  6.   Optimal design of maximized $S_{\mathrm{EA}} $ with maximum $M_{\mathrm{D}} $ constraints

    No. R A ti/mm to/mm MD/mm SEA/(J∙g−1)
    RSM FE RSM FE
    1 3 6 2.40 1.50 2.00 2.12 6.27 6.28
    2 6 4 2.20 1.50 4.00 4.00 6.96 6.97
    3 6 5 2.05 1.50 5.24 5.22 7.57 7.56
    4 6 5 1.94 1.50 6.00 5.97 8.00 8.02
    5 6 6 1.58 1.50 8.00 8.05 9.40 9.44
    6 5 5 1.50 1.50 10.00 8.80 9.89 9.93
    下载: 导出CSV
  • [1] PANDARKAR A, GOEL M D, HORA M S. Axial crushing of hollow and foam filled tubes: an overview [J]. Sādhanā, 2016, 41(8): 909–921.
    [2] YAO R Y, PANG T, ZHANG B, et al. On the crashworthiness of thin-walled multi-cell structures and materials: state of the art and prospects [J]. Thin-Walled Structures, 2023, 189: 110734. doi: 10.1016/j.tws.2023.110734
    [3] XUE Z Y, HUTCHINSON J W. A comparative study of impulse-resistant metal sandwich plates [J]. International Journal of Impact Engineering, 2004, 30(10): 1283–1305. doi: 10.1016/j.ijimpeng.2003.08.007
    [4] ZHANG P, CHENG Y S, LIU J, et al. Experimental and numerical investigations on laser-welded corrugated-core sandwich panels subjected to air blast loading [J]. Marine Structures, 2015, 40: 225–246. doi: 10.1016/j.marstruc.2014.11.007
    [5] WEI Y C, ZHANG C J, YUAN Y, et al. Blast response of additive manufactured Ti-6Al-4V sandwich panels [J]. International Journal of Impact Engineering, 2023, 176: 104553. doi: 10.1016/j.ijimpeng.2023.104553
    [6] SHEN J H, LU G X, ZHAO L M, et al. Short sandwich tubes subjected to internal explosive loading [J]. Engineering Structures, 2013, 55: 56–65. doi: 10.1016/j.engstruct.2011.12.005
    [7] LIU X R, TIAN X G, LU T J, et al. Blast resistance of sandwich-walled hollow cylinders with graded metallic foam cores [J]. Composite Structures, 2012, 94(8): 2485–2493. doi: 10.1016/j.compstruct.2012.02.029
    [8] LIANG M Z, LI X Y, LIN Y L, et al. Multiobjective blast-resistance optimization of gradient foam sandwiched cylindrical container [J]. Thin-Walled Structures, 2020, 157: 107114. doi: 10.1016/j.tws.2020.107114
    [9] LI S Q, LU G X, WANG Z H, et al. Finite element simulation of metallic cylindrical sandwich shells with graded aluminum tubular cores subjected to internal blast loading [J]. International Journal of Mechanical Sciences, 2015, 96/97: 1–12. doi: 10.1016/j.ijmecsci.2015.03.011
    [10] ZHANG T H, LIU Z F, LI S Q, et al. Dynamic response and energy absorption performance of aluminum foam-filled sandwich circular tubes under internal blast loading [J]. International Journal of Impact Engineering, 2023, 173: 104458. doi: 10.1016/j.ijimpeng.2022.104458
    [11] YANG F, XIE W H, MENG S H. Impact and blast performance enhancement in bio-inspired helicoidal structures: a numerical study [J]. Journal of the Mechanics and Physics of Solids, 2020, 142: 104025. doi: 10.1016/j.jmps.2020.104025
    [12] 王海任, 李世强, 刘志芳, 等. 爆炸载荷下双向梯度仿生夹芯圆板的力学行为 [J]. 爆炸与冲击, 2021, 41(4): 043201. doi: 10.11883/bzycj-2020-0132

    WANG H R, LI S Q, LIU Z F, et al. Mechanical behaviors of bi-directional gradient bio-inspired circular sandwich plates under blast loading [J]. Explosion and Shock Waves, 2021, 41(4): 043201. doi: 10.11883/bzycj-2020-0132
    [13] GHAZLAN A, NGO T, VAN LE T, et al. Blast performance of a bio-mimetic panel based on the structure of nacre: a numerical study [J]. Composite Structures, 2020, 234: 111691. doi: 10.1016/j.compstruct.2019.111691
    [14] YANG X F, MA J X, SHI Y L, et al. Crashworthiness investigation of the bio-inspired bi-directionally corrugated core sandwich panel under quasi-static crushing load [J]. Materials & Design, 2017, 135: 275–290.
    [15] YANG J K, GU D D, LIN K J, et al. Optimization of bio-inspired bi-directionally corrugated panel impact-resistance structures: numerical simulation and selective laser melting process [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91: 59–67. doi: 10.1016/j.jmbbm.2018.11.026
    [16] DALIRI V, ZEINEDINI A. Flexural behavoiur of the composite sandwich panels with novel and regular corrugated cores [J]. Applied Composite Materials, 2019, 26(3): 963–982. doi: 10.1007/s10443-019-09761-x
    [17] SHAHBAZI A, ZEINEDINI A. Impact response of E-glass/epoxy composite bi-directional corrugated core sandwich panels [J]. Polymers and Polymer Composites, 2021, 29(9): 1563–1574. doi: 10.1177/0967391120982751
    [18] 黄晗, 许述财, 陈姮. 仿生波纹夹层结构耐撞性分析及优化 [J] 爆炸与冲击, 2021, 41(8): 083102.

    HUANG H, XU S C, CHEN H. Crashworthiness analysis and optimization of bionic corrugated sandwich structures [J]. Explosion and Shock Waves, 2021, 41(8): 083102.
    [19] LI X, XU R, ZHANG X, et al. Inner blast response of fiber reinforced aluminum tubes [J]. International Journal of Impact Engineering, 2023, 172: 104416. doi: 10.1016/j.ijimpeng.2022.104416
    [20] LI S Q, YU B L, KARAGIOZOVA D, et al. Experimental, numerical, and theoretical studies of the response of short cylindrical stainless steel tubes under lateral air blast loading [J]. International Journal of Impact Engineering, 2019, 124: 48–60. doi: 10.1016/j.ijimpeng.2018.10.004
    [21] CHENG J H, GUSSEV M, ALLEN J, et al. Deformation and failure of PrintCast A356/316L composites: digital image correlation and finite element modeling [J]. Materials & Design, 2020, 195: 109061.
    [22] XIAO D B, DONG Z C, LI Y, et al. Compression behavior of the graded metallic auxetic reentrant honeycomb: experiment and finite element analysis [J]. Materials Science and Engineering: A, 2019, 758: 163–171. doi: 10.1016/j.msea.2019.04.116
    [23] 朱玉富, 赵春风, 周志航. 基于机器学习的钢筋混凝土板在爆炸作用下的最大位移预测模型 [J] 高压物理学报, 2023, 37(2): 024205.

    ZHU Y F, ZHAO C F, ZHOU Z H. Prediction model of maximum displacement for RC slabs under blast load based on machine learning [J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024205.
    [24] CHEN D, JING L, YANG F. Optimal design of sandwich panels with layered-gradient aluminum foam cores under air-blast loading [J]. Composites Part B: Engineering, 2019, 166: 169–186. doi: 10.1016/j.compositesb.2018.11.125
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  17
  • PDF下载量:  16
出版历程
  • 收稿日期:  2024-04-03
  • 修回日期:  2024-05-08
  • 录用日期:  2024-06-04
  • 网络出版日期:  2024-11-25
  • 刊出日期:  2024-12-05

目录

    /

    返回文章
    返回