First-Principles Study of the High-Pressure Phase Transition and Physical Properties of Rubidium Nitrate
-
摘要: 采用基于密度泛函理论的第一性原理计算,并结合CALYPSO晶体结构预测软件,系统地探索了零温下RbNO3的高压结构与物理性质。基于RbNO3-Ⅳ相的实验数据,比较了4种不同泛函的准确性,发现PBEsol泛函的准确性最高。基于该泛函预测到RbNO3在零温下的相变序列为R3m → Pnma → Pmmn (实验Ⅴ相),相变压强依次为1.7 和8.2 GPa,2次相变均为一级相变,体积坍塌率分别为3.73%和2.54%。研究结果表明,低压下RbNO3可能存在有别于实验(常温常压下)给出的P31结构的低温新相。3个相在各自能量稳定的压强范围内均满足“伯恩-黄昆”弹性稳定性判据,且在整个布里渊区中均不存在声子虚频现象,表明它们均具有动力学稳定性。电子性质分析表明,3个相均为半导体,相变引起的带隙变化普遍较小,加压普遍地抑制了铷离子的电荷向硝酸根离子转移。所预测的高压相变序列及各个相的弹性、晶格动力学、电子结构性质可为后续实验与理论研究提供参考。Abstract: The high-pressure structure and physical properties of RbNO3 at zero temperature was systematically explored using first-principles calculations based on density generalized theory combined with CALYPSO crystal structure predictions. The accuracy of four different functionals was compared based on experimental data of the RbNO3-Ⅳ phase, and the revised PBE for solids (PBEsol) functional was found to be the most reliable. The zero-temperature phase transition sequence of RbNO3 predicted is R3m→Pnma→Pmmn (experimental phaseⅤ) based on the PBEsol functional, and the two phase transition pressures are 1.7 and 8.2 GPa. The two phase transitions are first-order phase transitions, and the volume collapse rates reach 3.73% and 2.54%, respectively. This suggests that RbNO3 at low pressure may have new low-temperature phases those are different from P31 structure given by experiment in the room temperature and ambient pressure. In the energy-stabilized pressure interval, all three phases satisfy the “Born-Huangkun” elastic stability criteria, and there is no phonon virtual frequency phenomenon in the whole Brillouin zone, which indicates that they are dynamically stable structures. The electronic property analysis showed that the three phases are semiconductors, and the band gap changes caused by the phase transition are generally small, but the pressure generally inhibits the charge transfer from alkali metal ions to nitrate ions. The high-pressure phase transition sequence predicted in this paper and the elasticity, lattice dynamics, and electronic structure properties of the individual phases can provide a reference for subsequent experimental and theoretical studies.
-
Key words:
- high pressure /
- phase transition /
- first principles /
- RbNO3
-
表 1 RbNO3-Ⅳ相的晶格常数的理论值与实验值的比较
Table 1. Comparison between experimental and calculated lattice parameters of RbNO3-Ⅳ phase
Method Condition a/Å c/Å Volume/Å3 Simulation PBE 10.68(+1.62%) 7.60(+1.88%) 867.56(+5.29%) vdW-DF 10.72(+2.00%) 7.62(+2.14%) 876.29(+6.35%) PBEsol 10.39(−1.14%) 7.39(−0.94%) 797.69(−3.19%) RPBE 11.14(+5.99%) 7.91(+6.03%) 982.63(+19.26%) Experiment T=296 K[24] 10.47 7.44 815.58 T=298 K[25] 10.55 7.47 831.43 Average 10.51 7.46 823.96 表 2 高压下R3m、Pnma和Pmmn相的晶格参数和原子位置
Table 2. Lattice parameters and atomic coordinates of R3m, Pnma and Pmmn phases at different pressures
Phase Pressure/GPa Lattice parameters Wyckoff positions R3m 0 a=b=5.64 Å, c=9.48 Å,
α=β=90°, γ=120°Rb1: 3a(0.3333, 0.6667, 0.1699)
N1: 3a(0.3333, 0.6667, 0.7275)
O1: 9b(0.5373, 0.0746, 0.3953)Pnma 4 a=7.18 Å, b=5.61 Å, c=6.77 Å,
α=β=γ=90°Rb1: 4c(0.483, 0.250, 0.686)
N1: 4c(0.350, 0.250, 0.122)
O1: 4c(0.448, 0.250, 0.275)
O5: 8d(0.302, 0.444, 0.043)Pmmn 12 a=4.67 Å, b=5.34 Å, c=4.63 Å,
α=β=γ=90°Rb1: 2b(0.500, 0, 0.400)
N1: 2a(0, 0, 0.992)
O1: 2a(0, 0, 0.721)
O3: 4e(0, 0.204, 0.128)表 3 高压下R3m、Pnma和Pmmn相的弹性常数和弹性模量
Table 3. Elastic constant and elastic moduli of R3m, Pnma and Pmmn phase at high pressure
GPa Phase Pressure C11 C12 C13 C14 C22 C23 C33 C44 C55 C66 B G E R3m 0 37 14 11 −4 13 7 12 15 7 19 4 75 28 21 −8 39 6 23 35 11 29 12 124 46 42 −15 94 12 39 66 19 52 Pnma 0 22 7 9 41 9 32 7 10 9 16 10 24 4 50 19 30 73 19 69 12 17 19 36 17 44 12 96 43 59 129 35 119 19 −5 34 69 −57 −236 Pmmn 0 26 9 9 50 16 54 15 5 5 21 10 26 4 60 16 25 84 32 83 33 20 9 40 21 53 12 113 25 53 143 59 129 60 37 16 72 35 91 表 4 高压下R3m、Pnma和Pmmn相的元胞内的Bader电荷转移
Table 4. Calculated Bader charges within R3m, Pnma and Pmmn phases primitive cells at different pressures
Phase Pressure/GPa Atoms Number Charge/e Charge transfer/e R3m 0 Rb 1 8.10 0.90 N 1 4.16 0.84 O 3 6.58 −0.58 Pnma 4 Rb 4 8.13 0.87 N 4 4.13 0.87 O1 4 6.57 −0.57 O2 4 6.58 −0.58 O3 4 6.59 −0.59 Pmmn 12 Rb 2 8.14 0.86 N 2 4.07 0.93 O1 2 6.58 −0.58 O2 2 6.59 −0.59 O3 2 6.62 −0.62 -
[1] LAUE W, THIEMANN M, SCHEIBLER E, et al. Nitrates and nitrites [J]. Ullmann’s Encyclopedia of Industrial Chemistry, 2000, 24: 153–157. [2] MIAO M S, SUN Y H, ZUREK E, et al. Chemistry under high pressure [J]. Nature Reviews Chemistry, 2020, 4(10): 508–527. doi: 10.1038/s41570-020-0213-0 [3] SANTOS S S M, MARCONDES M L, JUSTO J F, et al. Calcium carbonate at high pressures and high temperatures: a first-principles investigation [J]. Physics of the Earth and Planetary Interiors, 2020, 299: 106327. doi: 10.1016/j.pepi.2019.106327 [4] LEE W E, GILBERT M, MURPHY S T, et al. Opportunities for advanced ceramics and composites in the nuclear sector [J]. Journal of the American Ceramic Society, 2013, 96(7): 2005–2030. doi: 10.1111/jace.12406 [5] SOLEIMANPOUR S, SADRAMELI S M, MOUSAVI S A H S, et al. Preparation and characterization of high temperature shape stable NaNO3/diatomite phase change materials with nanoparticles for solar energy storage applications [J]. Journal of Energy Storage, 2022, 45: 103735. doi: 10.1016/j.est.2021.103735 [6] DIÉGUEZ O, VANDERBILT D. Theoretical study of ferroelectric potassium nitrate [J]. Physical Review B, 2007, 76(13): 134101. doi: 10.1103/PhysRevB.76.134101 [7] RAO C N R, PRAKASH B, NATARAJAN M. Crystal structure transformations in inorganic nitrites, nitrates, and carbonates: NSRDS-NBS 53 [R]. Washington, USA: National Bureau of Standards, 1975. [8] AHTEE M, HEWAT A W. Structures of the high temperature phases of rubidium nitrate [J]. Physica Status Solidi (A), 1980, 58(2): 525–531. doi: 10.1002/pssa.2210580224 [9] LIU J J, DUAN C G, OSSOWSKI M M, et al. Molecular dynamics simulation of structural phase transitions in RbNO3 and CsNO3 [J]. Journal of Solid State Chemistry, 2001, 160(1): 222–229. doi: 10.1006/jssc.2001.9226 [10] DEAN C, HAMBLEY T W, SNOW M R. Structures of phase Ⅳ rubidium nitrate, RbNO3, and phase Ⅱ caesium nitrate, CsNO3 [J]. Acta Crystallographica Section C, 1984, 40(9): 1512–1515. [11] WANG Y C, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116 [12] WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466. [13] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865 [14] DION M, RYDBERG H, SCHRÖDER E, et al. Van der Waals density functional for general geometries [J]. Physical Review Letters, 2004, 92(24): 246401. doi: 10.1103/PhysRevLett.92.246401 [15] PERDEW J P, RUZSINSZKY A, CSONKA G I, et al. Restoring the density-gradient expansion for exchange in solids and surfaces [J]. Physical Review Letters, 2008, 100(13): 136406. doi: 10.1103/PhysRevLett.100.136406 [16] HAMMER B, HANSEN L B, NØRSKOV J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J]. Physical Review B, 1999, 59(11): 7413–7421. doi: 10.1103/PhysRevB.59.7413 [17] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169 [18] BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953 [19] TOGO A, TANAKA I. First principles phonon calculations in materials science [J]. Scripta Materialia, 2015, 108: 1–5. doi: 10.1016/j.scriptamat.2015.07.021 [20] HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349–354. doi: 10.1088/0370-1298/65/5/307 [21] OUADHA I, RACHED H, AZZOUZ-RACHED A, et al. Study of the structural, mechanical and thermodynamic properties of the new MAX phase compounds (Zr1−xTix)3AlC2 [J]. Computational Condensed Matter, 2020, 23: e00468. doi: 10.1016/j.cocom.2020.e00468 [22] MOMMA K, IZUMI F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data [J]. Journal of Applied Crystallography, 2011, 44(6): 1272–1276. doi: 10.1107/S0021889811038970 [23] MISHRA K K, CHANDRA S, SALKE N P, et al. Soft modes and anharmonicity in H3[Co(CN)6]: Raman spectroscopy and first-principles calculations [J]. Physical Review B, 2015, 92(13): 134112. doi: 10.1103/PhysRevB.92.134112 [24] POHL J, POHL D, ADIWIDJAJA G. Phase transition in rubidium nitrate at 346 K and structure at 296, 372, 413 and 437 K [J]. Acta Crystallographica Section B, 1992, 48(2): 160–166. doi: 10.1107/S0108768191013459 [25] SHAMSUZZOHA M, LUCAS B W. Structure (neutron) of phase Ⅳ rubidium nitrate at 298 and 403 K [J]. Acta Crystallographica Section B, 1982, 38(9): 2353–2357. doi: 10.1107/S0567740882008772 [26] SMITH D, LAWLER K V, MARTINEZ-CANALES M, et al. Postaragonite phases of CaCO3 at lower mantle pressures [J]. Physical Review Materials, 2018, 2(1): 013605. doi: 10.1103/PhysRevMaterials.2.013605 [27] WU Z J, ZHAO E J, XIANG H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Physical Review B, 2007, 76(5): 054115. doi: 10.1103/PhysRevB.76.054115 [28] MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems [J]. Physical Review B, 2014, 90(22): 224104. doi: 10.1103/PhysRevB.90.224104 [29] BORN M, HUANG K, LAX M. Dynamical theory of crystal lattices [J]. American Journal of Physics, 1955, 23(7): 474. [30] UKITA M, TOYOURA K, NAKAMURA A, et al. Pressure-induced phase transition of calcite and aragonite: a first principles study [J]. Journal of Applied Physics, 2016, 120(14): 142118. doi: 10.1063/1.4961723