硝酸铷高压相变和物理性质的第一性原理研究

王晓雪 丁雨晴 王晖

王晓雪, 丁雨晴, 王晖. 硝酸铷高压相变和物理性质的第一性原理研究[J]. 高压物理学报, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776
引用本文: 王晓雪, 丁雨晴, 王晖. 硝酸铷高压相变和物理性质的第一性原理研究[J]. 高压物理学报, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776
WANG Xiaoxue, DING Yuqing, WANG Hui. First-Principles Study of the High-Pressure Phase Transition and Physical Properties of Rubidium Nitrate[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776
Citation: WANG Xiaoxue, DING Yuqing, WANG Hui. First-Principles Study of the High-Pressure Phase Transition and Physical Properties of Rubidium Nitrate[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776

硝酸铷高压相变和物理性质的第一性原理研究

doi: 10.11858/gywlxb.20240776
基金项目: 国家自然科学基金(11974135)
详细信息
    作者简介:

    王晓雪(1998-),女,硕士研究生,主要从事高压下凝聚态物质结构与物性的理论研究. E-mail:wx@fysik.cn

    通讯作者:

    王 晖(1981-),男,博士,教授,主要从事高压下凝聚态物质结构与物性的理论研究. E-mail:wh@fysik.cn

  • 中图分类号: O521.2; O469

First-Principles Study of the High-Pressure Phase Transition and Physical Properties of Rubidium Nitrate

  • 摘要: 采用基于密度泛函理论的第一性原理计算,并结合CALYPSO晶体结构预测软件,系统地探索了零温下RbNO3的高压结构与物理性质。基于RbNO3-Ⅳ相的实验数据,比较了4种不同泛函的准确性,发现PBEsol泛函的准确性最高。基于该泛函预测到RbNO3在零温下的相变序列为R3mPnmaPmmn (实验Ⅴ相),相变压强依次为1.7 和8.2 GPa,2次相变均为一级相变,体积坍塌率分别为3.73%和2.54%。研究结果表明,低压下RbNO3可能存在有别于实验(常温常压下)给出的P31结构的低温新相。3个相在各自能量稳定的压强范围内均满足“伯恩-黄昆”弹性稳定性判据,且在整个布里渊区中均不存在声子虚频现象,表明它们均具有动力学稳定性。电子性质分析表明,3个相均为半导体,相变引起的带隙变化普遍较小,加压普遍地抑制了铷离子的电荷向硝酸根离子转移。所预测的高压相变序列及各个相的弹性、晶格动力学、电子结构性质可为后续实验与理论研究提供参考。

     

  • 图  R3mP31Pmmn相相对于Pnma相的热力学焓差曲线

    Figure  1.  Calculated enthalpy difference of R3m, P31 and Pmmn phases relative to Pnma as a function of pressure

    图  R3mPnmaP31Pmmn相的体积随压强的变化

    Figure  2.  Calculated volume of R3m, Pnma, P31 and Pmmn phases as a function of pressure

    图  R3mPnmaPmmn相的晶体结构

    Figure  3.  Crystal structures of R3m, Pnma, and Pmmn phase

    图  R3mPnmaPmmn相的声子色散曲线以及声子态密度

    Figure  4.  Phonon-dispersion curves and the PHDOS of R3m, Pnma and Pmmn phase

    图  R3mPnmaPmmn相的电子局域函数

    Figure  5.  Electron localization function of R3m, Pnma and Pmmn phase

    图  R3mPnmaPmmn相的COHP

    Figure  6.  Crystal orbital Hamilton populations of R3m, Pnma and Pmmn phase

    图  R3mPnmaPmmn相的能带结构和电子态密度

    Figure  7.  Band structures and partial densities of states of R3m, Pnma and Pmmn phases

    表  1  RbNO3-Ⅳ相的晶格常数的理论值与实验值的比较

    Table  1.   Comparison between experimental and calculated lattice parameters of RbNO3-Ⅳ phase

    Method Condition a c Volume/Å3
    Simulation PBE 10.68(+1.62%) 7.60(+1.88%) 867.56(+5.29%)
    vdW-DF 10.72(+2.00%) 7.62(+2.14%) 876.29(+6.35%)
    PBEsol 10.39(−1.14%) 7.39(−0.94%) 797.69(−3.19%)
    RPBE 11.14(+5.99%) 7.91(+6.03%) 982.63(+19.26%)
    Experiment T=296 K[24] 10.47 7.44 815.58
    T=298 K[25] 10.55 7.47 831.43
    Average 10.51 7.46 823.96
    下载: 导出CSV

    表  2  高压下R3mPnmaPmmn相的晶格参数和原子位置

    Table  2.   Lattice parameters and atomic coordinates of R3m, Pnma and Pmmn phases at different pressures

    Phase Pressure/GPa Lattice parameters Wyckoff positions
    R3m 0 a=b=5.64 Å, c=9.48 Å,
    α=β=90°, γ=120°
    Rb1: 3a(0.3333, 0.6667, 0.1699)
    N1: 3a(0.3333, 0.6667, 0.7275)
    O1: 9b(0.5373, 0.0746, 0.3953)
    Pnma 4 a=7.18 Å, b=5.61 Å, c=6.77 Å,
    α=β=γ=90°
    Rb1: 4c(0.483, 0.250, 0.686)
    N1: 4c(0.350, 0.250, 0.122)
    O1: 4c(0.448, 0.250, 0.275)
    O5: 8d(0.302, 0.444, 0.043)
    Pmmn 12 a=4.67 Å, b=5.34 Å, c=4.63 Å,
    α=β=γ=90°
    Rb1: 2b(0.500, 0, 0.400)
    N1: 2a(0, 0, 0.992)
    O1: 2a(0, 0, 0.721)
    O3: 4e(0, 0.204, 0.128)
    下载: 导出CSV

    表  3  高压下R3mPnmaPmmn相的弹性常数和弹性模量

    Table  3.   Elastic constant and elastic moduli of R3m, Pnma and Pmmn phase at high pressure GPa

    Phase Pressure C11 C12 C13 C14 C22 C23 C33 C44 C55 C66 B G E
    R3m 0 37 14 11 −4 13 7 12 15 7 19
    4 75 28 21 −8 39 6 23 35 11 29
    12 124 46 42 −15 94 12 39 66 19 52
    Pnma 0 22 7 9 41 9 32 7 10 9 16 10 24
    4 50 19 30 73 19 69 12 17 19 36 17 44
    12 96 43 59 129 35 119 19 −5 34 69 −57 −236
    Pmmn 0 26 9 9 50 16 54 15 5 5 21 10 26
    4 60 16 25 84 32 83 33 20 9 40 21 53
    12 113 25 53 143 59 129 60 37 16 72 35 91
    下载: 导出CSV

    表  4  高压下R3mPnmaPmmn相的元胞内的Bader电荷转移

    Table  4.   Calculated Bader charges within R3m, Pnma and Pmmn phases primitive cells at different pressures

    Phase Pressure/GPa Atoms Number Charge/e Charge transfer/e
    R3m 0 Rb 1 8.10 0.90
    N 1 4.16 0.84
    O 3 6.58 −0.58
    Pnma 4 Rb 4 8.13 0.87
    N 4 4.13 0.87
    O1 4 6.57 −0.57
    O2 4 6.58 −0.58
    O3 4 6.59 −0.59
    Pmmn 12 Rb 2 8.14 0.86
    N 2 4.07 0.93
    O1 2 6.58 −0.58
    O2 2 6.59 −0.59
    O3 2 6.62 −0.62
    下载: 导出CSV
  • [1] LAUE W, THIEMANN M, SCHEIBLER E, et al. Nitrates and nitrites [J]. Ullmann’s Encyclopedia of Industrial Chemistry, 2000, 24: 153–157.
    [2] MIAO M S, SUN Y H, ZUREK E, et al. Chemistry under high pressure [J]. Nature Reviews Chemistry, 2020, 4(10): 508–527. doi: 10.1038/s41570-020-0213-0
    [3] SANTOS S S M, MARCONDES M L, JUSTO J F, et al. Calcium carbonate at high pressures and high temperatures: a first-principles investigation [J]. Physics of the Earth and Planetary Interiors, 2020, 299: 106327. doi: 10.1016/j.pepi.2019.106327
    [4] LEE W E, GILBERT M, MURPHY S T, et al. Opportunities for advanced ceramics and composites in the nuclear sector [J]. Journal of the American Ceramic Society, 2013, 96(7): 2005–2030. doi: 10.1111/jace.12406
    [5] SOLEIMANPOUR S, SADRAMELI S M, MOUSAVI S A H S, et al. Preparation and characterization of high temperature shape stable NaNO3/diatomite phase change materials with nanoparticles for solar energy storage applications [J]. Journal of Energy Storage, 2022, 45: 103735. doi: 10.1016/j.est.2021.103735
    [6] DIÉGUEZ O, VANDERBILT D. Theoretical study of ferroelectric potassium nitrate [J]. Physical Review B, 2007, 76(13): 134101. doi: 10.1103/PhysRevB.76.134101
    [7] RAO C N R, PRAKASH B, NATARAJAN M. Crystal structure transformations in inorganic nitrites, nitrates, and carbonates: NSRDS-NBS 53 [R]. Washington, USA: National Bureau of Standards, 1975.
    [8] AHTEE M, HEWAT A W. Structures of the high temperature phases of rubidium nitrate [J]. Physica Status Solidi (A), 1980, 58(2): 525–531. doi: 10.1002/pssa.2210580224
    [9] LIU J J, DUAN C G, OSSOWSKI M M, et al. Molecular dynamics simulation of structural phase transitions in RbNO3 and CsNO3 [J]. Journal of Solid State Chemistry, 2001, 160(1): 222–229. doi: 10.1006/jssc.2001.9226
    [10] DEAN C, HAMBLEY T W, SNOW M R. Structures of phase Ⅳ rubidium nitrate, RbNO3, and phase Ⅱ caesium nitrate, CsNO3 [J]. Acta Crystallographica Section C, 1984, 40(9): 1512–1515.
    [11] WANG Y C, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116
    [12] WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466.
    [13] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [14] DION M, RYDBERG H, SCHRÖDER E, et al. Van der Waals density functional for general geometries [J]. Physical Review Letters, 2004, 92(24): 246401. doi: 10.1103/PhysRevLett.92.246401
    [15] PERDEW J P, RUZSINSZKY A, CSONKA G I, et al. Restoring the density-gradient expansion for exchange in solids and surfaces [J]. Physical Review Letters, 2008, 100(13): 136406. doi: 10.1103/PhysRevLett.100.136406
    [16] HAMMER B, HANSEN L B, NØRSKOV J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J]. Physical Review B, 1999, 59(11): 7413–7421. doi: 10.1103/PhysRevB.59.7413
    [17] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [18] BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
    [19] TOGO A, TANAKA I. First principles phonon calculations in materials science [J]. Scripta Materialia, 2015, 108: 1–5. doi: 10.1016/j.scriptamat.2015.07.021
    [20] HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349–354. doi: 10.1088/0370-1298/65/5/307
    [21] OUADHA I, RACHED H, AZZOUZ-RACHED A, et al. Study of the structural, mechanical and thermodynamic properties of the new MAX phase compounds (Zr1−xTix)3AlC2 [J]. Computational Condensed Matter, 2020, 23: e00468. doi: 10.1016/j.cocom.2020.e00468
    [22] MOMMA K, IZUMI F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data [J]. Journal of Applied Crystallography, 2011, 44(6): 1272–1276. doi: 10.1107/S0021889811038970
    [23] MISHRA K K, CHANDRA S, SALKE N P, et al. Soft modes and anharmonicity in H3[Co(CN)6]: Raman spectroscopy and first-principles calculations [J]. Physical Review B, 2015, 92(13): 134112. doi: 10.1103/PhysRevB.92.134112
    [24] POHL J, POHL D, ADIWIDJAJA G. Phase transition in rubidium nitrate at 346 K and structure at 296, 372, 413 and 437 K [J]. Acta Crystallographica Section B, 1992, 48(2): 160–166. doi: 10.1107/S0108768191013459
    [25] SHAMSUZZOHA M, LUCAS B W. Structure (neutron) of phase Ⅳ rubidium nitrate at 298 and 403 K [J]. Acta Crystallographica Section B, 1982, 38(9): 2353–2357. doi: 10.1107/S0567740882008772
    [26] SMITH D, LAWLER K V, MARTINEZ-CANALES M, et al. Postaragonite phases of CaCO3 at lower mantle pressures [J]. Physical Review Materials, 2018, 2(1): 013605. doi: 10.1103/PhysRevMaterials.2.013605
    [27] WU Z J, ZHAO E J, XIANG H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Physical Review B, 2007, 76(5): 054115. doi: 10.1103/PhysRevB.76.054115
    [28] MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems [J]. Physical Review B, 2014, 90(22): 224104. doi: 10.1103/PhysRevB.90.224104
    [29] BORN M, HUANG K, LAX M. Dynamical theory of crystal lattices [J]. American Journal of Physics, 1955, 23(7): 474.
    [30] UKITA M, TOYOURA K, NAKAMURA A, et al. Pressure-induced phase transition of calcite and aragonite: a first principles study [J]. Journal of Applied Physics, 2016, 120(14): 142118. doi: 10.1063/1.4961723
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  47
  • PDF下载量:  41
出版历程
  • 收稿日期:  2024-04-01
  • 修回日期:  2024-04-09
  • 录用日期:  2024-04-15
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回