爆炸载荷下仿贝壳Voronoi砖泥结构的动态响应

陈鑫康 李志洋 雷建银 刘志芳

陈鑫康, 李志洋, 雷建银, 刘志芳. 爆炸载荷下仿贝壳Voronoi砖泥结构的动态响应[J]. 高压物理学报, 2024, 38(6): 064108. doi: 10.11858/gywlxb.20240772
引用本文: 陈鑫康, 李志洋, 雷建银, 刘志芳. 爆炸载荷下仿贝壳Voronoi砖泥结构的动态响应[J]. 高压物理学报, 2024, 38(6): 064108. doi: 10.11858/gywlxb.20240772
CHEN Xinkang, LI Zhiyang, LEI Jianyin, LIU Zhifang. Dynamic Response of Nacre-Like Voronoi Brick and Mortar Structure under Explosive Load[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064108. doi: 10.11858/gywlxb.20240772
Citation: CHEN Xinkang, LI Zhiyang, LEI Jianyin, LIU Zhifang. Dynamic Response of Nacre-Like Voronoi Brick and Mortar Structure under Explosive Load[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064108. doi: 10.11858/gywlxb.20240772

爆炸载荷下仿贝壳Voronoi砖泥结构的动态响应

doi: 10.11858/gywlxb.20240772
基金项目: 国家自然科学基金(12372363,12272254);山西省自然科学基金(202203021211170)
详细信息
    作者简介:

    陈鑫康(1997-),男,硕士,主要从事材料冲击动力学行为研究. E-mail:2107874508@qq.com

    通讯作者:

    雷建银(1989-),男,博士,副教授,主要从事材料冲击动力学行为研究. E-mail:leijianyin@tyut.edu.cn

  • 中图分类号: O341; O521.9

Dynamic Response of Nacre-Like Voronoi Brick and Mortar Structure under Explosive Load

  • 摘要: 基于贝壳多尺度、多层级的砖泥结构,构建仿贝壳Voronoi砖泥结构。通过将3D打印、爆炸实验和数值模拟相结合,探索仿贝壳Voronoi砖泥结构在爆炸载荷下的动力学响应,研究Voronoi单元尺寸和层内软材料厚度对结构变形破坏模式和能量吸收的影响。实验结果表明:在40 g球形乳化炸药作用下,仿贝壳Voronoi砖泥结构的前面板中心处出现了向四周蔓延的径向裂纹,后面板出现小块材料脱落。在此基础上,建立了有限元模型,并验证了其有效性。随着药量的增加,仿贝壳Voronoi砖泥结构主要分为塑性变形、前后面板裂纹、小块材料脱落、结构整体贯穿破坏伴随夹持端剪切破坏4种破坏模式。研究发现:仿贝壳Voronoi砖泥结构中硬材料的水平正应力远大于垂直正应力,层间软材料的剪应变大于层内软材料的剪应变。层间软材料的比吸能远大于硬材料的比吸能,约为硬材料的1.8~2.3倍;随着Voronoi单元尺寸的增大,层内软材料的比吸能增大了45.6%;随着层内软材料厚度增加,层内软材料的比吸能增大了31.1%,允许结构进一步的塑性变形。研究结果为仿生结构设计提供了一定的技术依据。

     

  • 图  仿贝壳Voronoi砖泥结构的构建流程:(a) 单层硬材料,(b) 单层仿贝壳Voronoi砖泥结构,(c) 3层仿贝壳Voronoi砖泥结构

    Figure  1.  Construction flowchart of nacre-like Voronoi brick and mortar structures: (a) single layer of stiff material; (b) single layer of nacre-like Voronoi brick and mortar structure; (c) three layers of nacre-like Voronoi brick and mortar structure

    图  爆炸实验装置及试样

    Figure  2.  Explosion experimental device and sample

    图  爆炸实验结果

    Figure  3.  Explosive experimental result

    图  仿贝壳Voronoi砖泥结构有限元模型

    Figure  4.  Finite element model of the nacre-like Voronoi brick and mortar structure

    图  试样1的数值模拟结果

    Figure  5.  Simulation results of sample 1

    图  不同炸药药量下仿贝壳Voronoi砖泥结构的破坏模式

    Figure  6.  Damage modes of nacre-like Voronoi brick and mortar structure under different explosive charges

    图  仿贝壳Voronoi砖泥结构的应力和应变云图:(a) 硬材料水平正应力,(b) 硬材料垂直正应力,(c) 层间软材料的剪切应变,(d) 层内软材料的剪切应变

    Figure  7.  Stress and strain contour plots of nacre-like Voronoi brick and mortar structure: (a) horizontal normal strain of the stiff material; (b) vertical normal stress of the stiff material; (c) shear strain of the interlaminar soft material; (d) shear strain of the intralaminar soft material

    图  不同堆叠层数仿贝壳Voronoi砖泥结构的破坏模式

    Figure  8.  Damage modes of nacre-like Voronoi brick and mortar structure with different layer numbers

    图  不同Voronoi单元尺寸试样的破坏模式

    Figure  9.  Damage modes of samples with different Voronoi element sizes

    图  10  不同软材料厚度试样的破坏模式

    Figure  10.  Damage modes of samples with different thickness of soft material

    表  1  试样的几何参数

    Table  1.   Geometrical parameters of samples

    Sample No. Voronoi cell
    size/mm
    Soft material
    thickness/mm
    Number of plies Mass of emulsion
    explosive/g
    Volume fraction of
    soft material/%
    1 10 0.8 3 40 27.3
    2 10 0.8 3 20 27.3
    3 10 0.8 3 30 27.3
    4 10 0.8 3 50 27.3
    5 10 0.8 1 40 11.9
    6 10 0.8 2 40 21.7
    7 10 0.8 4 40 25.4
    8 14 0.8 3 40 22.8
    9 18 0.8 3 40 20.1
    10 10 1.2 3 40 29.9
    11 10 1.6 3 40 35.5
    下载: 导出CSV

    表  2  不同单元尺寸、层内软材料厚度的3层砖泥结构各组分的比吸能

    Table  2.   $E_{\mathrm{SA}} $ of each component of 3-layer structure with different element size and soft material thickness

    Cell size/mm Soft material thickness/mm Volume fraction of
    soft material/%
    ESA of interlaminar soft material/(J·kg–1) ESA of intralaminar soft material/(J·kg–1) ESA of stiff material/(J·kg–1)
    10 0.8 27.3 138.1 37.9 63.7
    12 0.8 24.6 138.5 43.5 61.6
    14 0.8 22.8 138.5 44.9 61.0
    16 0.8 22.1 138.5 46.2 60.9
    18 0.8 20.1 141.1 55.2 60.9
    10 1.0 29.6 124.6 46.5 63.0
    10 1.2 29.9 124.2 47.8 65.6
    10 1.4 34.3 125.6 49.7 70.9
    10 1.6 35.5 122.5 52.3 66.4
    下载: 导出CSV
  • [1] RKHALAF M, SUNESARA A, ASHRAFI B, et al. Toughness by segmentation: fabrication, testing and micromechanics of architectured ceramic panels for impact applications [J]. International Journal of Solids and Structures, 2019, 158: 52–65. doi: 10.1016/j.ijsolstr.2018.08.025
    [2] LIU P, ZHU D J, YAO Y M, et al. Numerical simulation of ballistic impact behavior of bio-inspired scale-like protection system [J]. Materials & Design, 2016, 99: 201–210. doi: 10.1016/j.matdes.2016.03.040
    [3] DIMAS L S, BRATZEL G H, EYLON I, et al. Tough composites inspired by mineralized natural materials: computation, 3D printing, and testing [J]. Advanced Functional Materials, 2013, 23(36): 4629–4638. doi: 10.1002/adfm.201300215
    [4] GRUNENFELDER L K, SUKSANGPANYA N, SALINAS C, et al. Bio-inspired impact-resistant composites [J]. Acta Biomaterialia, 2014, 10(9): 3997–4008. doi: 10.1016/j.actbio.2014.03.022
    [5] GU G X, TAKAFFOLI M, HSIEH A J, et al. Biomimetic additive manufactured polymer composites for improved impact resistance [J]. Extreme Mechanics Letters, 2016, 9: 317–323. doi: 10.1016/j.eml.2016.09.006
    [6] BARTHELAT F. Nacre from mollusk shells: a model for high-performance structural materials [J]. Bioinspiration & Biomimetics, 2010, 5(3): 035001. doi: 10.1088/1748-3182/5/3/035001
    [7] CORNI I, HARVEY T J, WHARTON J A, et al. A review of experimental techniques to produce a nacre-like structure [J]. Bioinspiration & Biomimetics, 2012, 7(3): 031001. doi: 10.1088/1748-3182/7/3/031001
    [8] 赵赫威, 郭林. 仿贝壳珍珠母层状复合材料的制备及应用 [J]. 科学通报, 2017, 62(6): 576–589. doi: 10.1360/N972016-00754

    ZHAO H W, GUO L. Synthesis and applications of layered structural composites inspired by nacre [J]. Chinese Science Bulletin, 2017, 62(6): 576–589. doi: 10.1360/N972016-00754
    [9] GU G X, SU I, SHARMA S, et al. Three-dimensional-printing of bio-inspired composites [J]. Journal of Biomechanical Engineering, 2016, 138(2): 021006. doi: 10.1115/1.4032423
    [10] 刘英志, 雷建银, 王志华. 冲击载荷下仿贝壳砖泥结构的动态响应 [J]. 高压物理学报, 2022, 36(1): 014202. doi: 10.11858/gywlxb.20210790

    LIU Y Z, LEI J Y, WANG Z H. Dynamic response of narce-like brick and mortar structure under impact load [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014202. doi: 10.11858/gywlxb.20210790
    [11] PADOLE M, GHARDE S, KANDASUBRAMANIAN B. Three-dimensional printing of molluscan shell inspired architectures via fused deposition modeling [J]. Environmental Science and Pollution Research, 2021, 28(34): 46356–46366. doi: 10.1007/s11356-020-09799-6
    [12] YADAV R, GOUD R, DUTTA A, et al. Biomimicking of hierarchal molluscan shell structure via layer by layer 3D printing [J]. Industrial & Engineering Chemistry Research, 2018, 57(32): 10832–10840. doi: 10.1021/acs.iecr.8b01738
    [13] WU K J, ZHENG Z J, ZHANG S S, et al. Interfacial strength-controlled energy dissipation mechanism and optimization in impact-resistant nacreous structure [J]. Materials & Design, 2019, 163: 107532. doi: 10.1016/j.matdes.2018.12.004
    [14] GU G X, TAKAFFOLI M, BUEHLER M J. Hierarchically enhanced impact resistance of bioinspired composites [J]. Advanced Materials, 2017, 29(28): 1700060. doi: 10.1002/adma.201700060
    [15] WU X D, MENG X S, ZHANG H G. An experimental investigation of the dynamic fracture behavior of 3D printed nacre-like composites [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112: 104068. doi: 10.1016/j.jmbbm.2020.104068
    [16] RITCHIE R O. The conflicts between strength and toughness [J]. Nature Materials, 2011, 10(11): 817–822. doi: 10.1038/nmat3115
    [17] TRAN P, NGO T D, GHAZLAN A, et al. Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings [J]. Composites Part B: Engineering, 2017, 108: 210–223. doi: 10.1016/j.compositesb.2016.09.083
    [18] WU K J, SONG Y H, ZHANG X, et al. A prestressing strategy enabled synergistic energy-dissipation in impact-resistant nacre-like structures [J]. Advanced Science, 2022, 9(6): 2104867. doi: 10.1002/advs.202104867
    [19] WANG J, HU D Y, ZHANG Z Q, et al. Anti-impact performance of bionic tortoiseshell-like composites [J]. Composite Structures, 2023, 303: 116315. doi: 10.1016/j.compstruct.2022.116315
    [20] KO K, JIN S, LEE S E, et al. Impact resistance of nacre-like composites diversely patterned by 3D printing [J]. Composite Structures, 2020, 238: 111951. doi: 10.1016/j.compstruct.2020.111951
    [21] KO K, LEE S, HWANG Y K, et al. Investigation on the impact resistance of 3D printed nacre-like composites [J]. Thin-Walled Structures, 2022, 177: 109392. doi: 10.1016/j.tws.2022.109392
    [22] WEI Z Q, XU X H. Gradient design of bio-inspired nacre-like composites for improved impact resistance [J]. Composites Part B: Engineering, 2021, 215: 108830. doi: 10.1016/j.compositesb.2021.108830
    [23] 李志洋, 雷建银, 刘志芳. 爆炸载荷下仿贝壳结构的动态响应 [J]. 爆炸与冲击, 2022, 42(8): 083101. doi: 10.11883/bzycj-2022-0145

    LI Z Y, LEI J Y, LIU Z F. Dynamic response of nacre-like structure under explosion load [J]. Explosion and Shock Waves, 2022, 42(8): 083101. doi: 10.11883/bzycj-2022-0145
    [24] CHEN B C, ZOU M, LIU G M, et al. Experimental study on energy absorption of bionic tubes inspired by bamboo structures under axial crushing [J]. International Journal of Impact Engineering, 2018, 115: 48–57. doi: 10.1016/j.ijimpeng.2018.01.005
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  30
  • PDF下载量:  11
出版历程
  • 收稿日期:  2024-04-03
  • 修回日期:  2024-04-09
  • 网络出版日期:  2024-11-25
  • 刊出日期:  2024-12-05

目录

    /

    返回文章
    返回