冲击应力和脉宽对NbTiZr中熵合金层裂的影响

罗小平 李绪海 唐泽明 李治国 陈森 王媛 俞宇颖 胡建波

赵亮, 李明哲, 吴楠楠, 王金龙, 梁晓波, 谷洲之, 李怀勇. 缠绕离散式大腔体超高压模具的设计计算及数值模拟[J]. 高压物理学报, 2025, 39(3): 033301. doi: 10.11858/gywlxb.20240851
引用本文: 罗小平, 李绪海, 唐泽明, 李治国, 陈森, 王媛, 俞宇颖, 胡建波. 冲击应力和脉宽对NbTiZr中熵合金层裂的影响[J]. 高压物理学报, 2024, 38(6): 064101. doi: 10.11858/gywlxb.20240771
ZHAO Liang, LI Mingzhe, WU Nannan, WANG Jinlong, LIANG Xiaobo, GU Zhouzhi, LI Huaiyong. Calculation and Numerical Simulation of Winding Discreted Large Cavity of Ultra-High Pressure Die[J]. Chinese Journal of High Pressure Physics, 2025, 39(3): 033301. doi: 10.11858/gywlxb.20240851
Citation: LUO Xiaoping, LI Xuhai, TANG Zeming, LI Zhiguo, CHEN Sen, WANG Yuan, YU Yuying, HU Jianbo. Effects of Shock Peak Stress and Pulse Duration on Spall Damage of NbTiZr Medium-Entropy Alloy[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064101. doi: 10.11858/gywlxb.20240771

冲击应力和脉宽对NbTiZr中熵合金层裂的影响

doi: 10.11858/gywlxb.20240771
基金项目: 国家重点研发计划(2021YFB3802303)
详细信息
    作者简介:

    罗小平(1999-),男,硕士研究生,主要从事冲击动力学研究. E-mail:lxp268966@163.com

    通讯作者:

    俞宇颖(1976-),男,博士,研究员,主要从事高压物理与力学研究. E-mail:yuyinyu@caep.cn

    胡建波(1980-),男,博士,研究员,主要从事冲击动力学研究. E-mail:jianbo.hu@caep.cn

  • 中图分类号: O347.3; O521.2

Effects of Shock Peak Stress and Pulse Duration on Spall Damage of NbTiZr Medium-Entropy Alloy

  • 摘要: 中、高熵合金因很好地兼顾了强度和韧性而备受关注,在多种极端工况下具有重要的应用前景。然而,在强冲击载荷等极端条件下,其动态力学行为和损伤失效机制仍不清楚。为此,研究了NbTiZr中熵合金在平板冲击载荷下的层裂损伤,探讨了冲击应力和加载脉宽的影响。通过波剖面分析,获得了冲击应力、加载脉宽和层裂强度信息。研究表明,NbTiZr中熵合金的层裂强度随冲击应力的增大而线性增大,随加载脉冲宽度的增大呈指数减小,介于3.77~4.80 GPa之间。利用光学显微镜、扫描电子显微镜和电子背散射衍射,分析了冲击加载后回收样品的微观组织结构,发现冲击应力和加载脉冲宽度对NbTiZr的层裂损伤形貌有显著影响,层裂损伤形式为准解理断裂,未观察到固-固相变或变形孪晶。

     

  • 全浸水带间隙发射作为一种新的水下发射方式[1],通过间隙燃气在膛内贴壁运动,卷吸回流后逐渐汇聚成弹前气幕,排出弹前水柱,将射弹在膛口的发射环境由水介质转化为气体介质。当气体射流流出枪口后,膛口处射流迅速膨胀成球形气体空腔,射弹穿过气体空腔与水介质接触,产生强烈的冲击载荷。水下高速射弹的弹体主要由硬铝合金尾杆和钨合金头部组成,两者镶嵌连接,连接强度有限,入水瞬间弹头会承受巨大冲击,因此射弹的入水冲击载荷成为水下射弹设计中的一个重要问题。

    Karman[2]最先开始对入水冲击现象进行研究,采用动量定理并引入附加质量的概念,推导出入水冲击载荷的计算公式。Wagner[3]将Karman的方法理论化,提出了近似平板理论及自相似解法,得出了冲击压力在结构沾湿面的分布情况,使理论分析更加符合实际情况,为后来学者的理论研究奠定了基础。在国内,秦洪德等[4]、王永虎等[5]对入水冲击问题的现状和进展进行了详细的分析。宋保维等[6]基于不可压缩的非定常势流理论,建立了空投水雷入水冲击计算的数学模型。卢炽华等[7]利用不同浸深的附加质量,对刚性细长体斜姿态落水冲击进行建模,得出其入水角很小,会使弹体处在最危险的状态。王永虎等[8-9]先后对刚性尖拱体垂直姿态高速入水和斜入水的冲击理论进行了建模和仿真。魏卓慧等[10]建立了刚性截锥弹体垂直入水冲击载荷的数学模型,并对其进行了数值计算。陈诚等[11]对超空泡航行器倾斜入水冲击载荷进行了试验研究,得出了峰值时刻的阻力系数。朱珠等[12]利用商业软件FLUENT,建立了柱体回转体高速入水冲击的数值模拟模型,得到了速度对入水冲击载荷的影响规律。然而以上研究主要针对由空中入水的冲击载荷分析,对于水下入水冲击问题研究较少。本工作在此前提条件下,计算分析全水下发射高速射弹入水的冲击载荷,这对于水下发射武器研究具有一定的现实意义。

    本研究拟建立锥形弹体水平及斜入水的冲击载荷理论模型,模型中考虑弹体重力、弹体浮力、附加质量、弹头锥角及入水攻角的影响,对不同头部结构参数的锥形弹体以不同入水速度入水的冲击载荷进行计算,分析入水速度、弹头锥角和入水攻角对冲击载荷的影响。研究结果对于弹体入水冲击载荷的预测及全水下发射方式发射的射弹头部结构设计具有参考价值。

    假设射弹为刚体,不考虑射弹入水时空泡的影响,根据动量定理,射弹高速入水冲击时的动量方程为

    Mv0=(M+m)v+Mgt+Fbt+Fdt
    (1)

    式中:M为射弹的质量,m为射弹的附加质量,Fd为射弹入水时受到的阻力,Fb为射弹所受的浮力。

    对式(1)等号两边进行微分,得到射弹入水冲击时的动力学方程

    (M+m)d2hdt2+dmdtdhdt+12ρCdA(dhdt)2=0
    (2)

    式中:h为射弹侵入的距离,A为阻力面积,Cd为阻力系数,ρ为水的密度。

    射弹沿 x 轴水平入水时,由于入水冲击过程的瞬时性,入水初期其运动方向基本保持不变,流体动力主要作用于射弹轴线方向,在射弹轴线方向上重力和浮力对射弹影响很小,基本可忽略不计。

    射弹入水冲击过程中,射弹浸没在水中的体积会排挤液面流体产生隆起现象,如图1所示,有效液面决定了自由水平液面的抬高程度,这取决于射弹锥头的外形和入水角等初始状态。沾湿因子定义为有效液面与实际液面的比值。

    图  1  射弹水平入水冲击示意图
    Figure  1.  Schematic diagram of horizontal impact of the projectile

    利用轴长体假设和Tayler关于在不同浸深时附加质量的表达式[13],参考垂直入水相关文献[10, 14],求出锥形射弹入水的附加质量为

    m=43ρ(Cwh)3tan3β
    (3)
    A=π(Cwh)2tan2β
    (4)
    dmdt=dmdhdhdt=4ρtan3β(Cwh)2Cwdhdt
    (5)

    式中:Cw为沾湿因子,β为射弹头部的半锥角,如图1所示。

    将式(3)~式(5)代入式(2),得到总方程为

    [M+43ρ(Cwh)3tan3β]d2hdt2+4ρtan3β(Cwh)2Cw(dhdt)2+12ρCdπ(Cwh)2tan2β(dhdt)2=0
    (6)

    采用MATLAB软件,利用龙格-库塔方法进行求解,可以得到弹体入水时的冲击载荷。

    图2所示,采用全新的发射方式时,燃气排出并在膛口形成球形气体空腔。以地面为坐标系,枪口斜向上(即y轴正方向)、斜向下(即y轴负方向)发射时,根据圆切线定理,穿过球形气腔仍可看作垂直于液面入水,然而射弹入水在有攻角的情况下,轴向上会受到重力和浮力的作用分力影响,攻角正负值相反时,重力与浮力在射弹轴向上的作用分力方向也相反。

    图  2  射弹攻角示意图
    Figure  2.  Angle of attack of the projectile

    其他条件与水平入水时保持不变,攻角为正时,根据动量方程,得到动力学方程

    (M+m)d2hdt2+dmdtdhdt+12ρCdA(dhdt)2+MgsinαFbsinα=0
    (7)

    式中:α为射弹攻角,射弹斜向上发射时为正值,斜向下时为负值。

    射弹所受浮力为

    Fb=13πρg(Cwh)3tan2β
    (8)

    当攻角为正值时,得到的总方程为

    [M+43ρ(Cwh)3tan3β]d2hdt2+4ρtan3β(Cwh)2Cw(dhdt)2+12ρCdπ(Cwh)2tan2β(dhdt)2+Mgsinα13πρg(Cwh)3tan2βsinα=0
    (9)

    同理,攻角为负值时的总方程为

    [M+43ρ(Cwh)3tan3β]d2hdt2+4ρtan3β(Cwh)2Cw(dhdt)2+12ρCdπ(Cwh)2tan2β(dhdt)2Mgsinα+13πρg(Cwh)3tan2βsinα=0
    (10)

    对式(9)、式(10)进行求解,可以得到不同攻角下的入水冲击载荷。

    由于水下射弹的质量较轻,入水速度较大,水下超空泡射弹入水平均速度约为600 m/s,因此入水速度对射弹入水冲击载荷的影响很大。本计算中,设射弹质量为0.14 kg,射弹头部半锥角为6°,计算得到不同速度时射弹的入水冲击载荷曲线,如图3所示,其中用射弹加速度反映入水冲击载荷。可以看出:射弹的入水冲击载荷先增大后减小,载荷变化主要发生在射弹入水前1 ms,最后渐渐趋于稳定;入水速度越大,冲击载荷峰值越大,入水后达到峰值的时间越短。此外,计算了不同速度下的入水冲击载荷峰值,如图4所示。入水速度在400~700 m/s范围时,射弹入水冲击载荷峰值一般为103g量级(g为重力加速度)。从冲击载荷峰值与速度的关系可以得出入水冲击载荷的峰值与速度基本呈线性关系。

    图  3  不同速度时的入水冲击载荷
    Figure  3.  Driving impact loads at different velocities
    图  4  不同速度时的冲击载荷峰值
    Figure  4.  Peak impact loads at different velocities

    设射弹质量为0.14 kg,通过计算获得了不同锥角的锥形射弹以600 m/s入水时的冲击载荷曲线,如图5所示。可以看出:射弹的入水冲击载荷先增大后减小,最后趋于稳定;半锥角β越大,冲击载荷峰值越大,并且入水后达到峰值的时间越短。改变半锥角,计算出不同半锥角情况下射弹入水冲击载荷峰值,如图6所示。从冲击载荷峰值与半锥角的关系可以得出入水冲击载荷峰值与半锥角基本呈线性关系。

    图  5  不同锥角时的入水冲击载荷
    Figure  5.  Driving impact loads at different cone angles
    图  6  不同锥角时的冲击载荷峰值
    Figure  6.  Peak impact loads at different cone angles

    当射弹质量为0.14 kg,入水速度为600 m/s,攻角α分别取45°、−45 °和0°(即水平入水)时,计算得到的射弹入水冲击载荷曲线如图7所示。可见,3条曲线基本重叠,差值在1g量级,相比于速度和半锥角对冲击载荷的影响,攻角对冲击载荷的影响几乎可以忽略不计。

    图  7  不同攻角时的入水冲击载荷
    Figure  7.  Inlet impact loads at different angles of attack

    此外,射弹在高速入水状态下,从液面进入水中的实际深度与理想深度存在一定的偏差,为了表达该误差,引入沾湿因子,沾湿因子的取值对冲击载荷的结果也存在影响。沾湿因子不同时射弹的入水冲击载荷如图8所示。从图8可以看出:沾湿因子越大,入水冲击载荷峰值越大;但沾湿因子对入水冲击载荷的影响较小,当沾湿因子变化值为0.1时,入水冲击载荷的变化在10%以内。

    图  8  沾湿因子不同时的入水冲击载荷
    Figure  8.  Inlet impact loads with different wet factors

    (1)射弹头部锥角相同时,入水冲击载荷峰值与速度呈正线性相关,入水速度越大,冲击载荷达到峰值的时间越短;射弹入水速度相同时,入水冲击载荷的大小与锥角呈正线性相关,锥角越大,冲击载荷达到峰值的时间越短。

    (2)射弹锥角和入水速度相同、入水攻角不同时,入水冲击载荷曲线与水平入水曲线基本重合,说明射弹重力和浮力在轴向上对入水冲击载荷的影响相对入水阻力几乎可以忽略不计。当射弹带有攻角入水后,重力和浮力更多的是对射弹产生径向力矩影响。

    (3)沾湿因子越大,入水冲击载荷峰值越大,但对入水冲击载荷影响较小,当沾湿因子变化为0.1时,入水冲击载荷的变化在10%以内。沾湿因子作为一个变量,其大小反过来也取决于入水冲击载荷,入水冲击载荷越大,沾湿因子也越大。

    (4)理论模型借鉴了高速弹体垂直入水的理论模型,数值模拟计算结果与已报道的高速射弹垂直入水冲击载荷数值计算和仿真结果高度一致,验证了本数学建模和数值计算的准确性。

    (5)探讨了全水下发射高速射弹入水瞬间的冲击载荷,高速射弹入水后形成超空泡,冲击载荷迅速减小。本工作对射弹未形成超空泡的情况进行了模型推导和数值模拟计算,对形成超空泡之前的理论研究具有重要意义。

  • 图  初始NbTiZr中熵合金样品的XRD谱(a)和反极图(b)

    Figure  1.  XRD pattern (a) and inverse pole figure (b) of the as-cast NbTiZr medium-entropy alloy sample

    图  平板冲击实验的波系作用(a)及其对应的自由面速度曲线(b)

    Figure  2.  Schematic x-t (position-time) diagrams of wave propagation and interaction (a) and corresponding free surface velocity profiles ufs(t) (b)

    图  不同冲击应力(a)和冲击脉宽(b)条件下的自由面速度历史曲线以及层裂强度与冲击峰值应力(c)、冲击脉宽(d)和拉伸应变率(e)的拟合关系

    Figure  3.  Free surface velocity profiles for different peak stresses (a) and different pulse durations (b), and the spall strength as a function of peak stress (c), pulse duration (d) and tensile strain rate (e)

    图  平板冲击实验得到的回收样品的OM图像:(a)~(d) 不同冲击应力下的层裂损伤形貌,(e)~(f) 不同加载脉冲宽度下的层裂损伤形貌,(g) 沿冲击方向的损伤度分布统计(Shot A4除外),(h) 不同加载脉冲宽度下层裂损伤的伸长率指数与孔洞及裂纹等效尺寸的关系

    Figure  4.  Optical graphs of the recovered samples and damage degree analysis: (a)−(d) damage of samples for different peak stresses, and (e)−(f) damage of samples for different pulse durations; (g) damage degree distributions along the impact direction for all shots except Shot A4; (h) elongation index as a function of equivalent diameter of voids and cracks with different pulse durations

    图  回收样品层裂损伤的SEM图像:(a)~(c) Shot A1的回收样品,(d) Shot B1的回收样品,(e) Shot A4的回收样品层裂面断口形貌,(f) 图5(e)红框区域的局部放大图像(冲击方向为y轴)

    Figure  5.  SEM images of damage in the spallation region: (a)−(c) recovered sample in Shot A1, (d) recovered sample in Shot B1, (e) fracture morphology of the spall plane of the recovered sample in Shot A4, (f) magnified view of the region indicated by the red rectangle in Fig.5(e) (The impact direction is the y-axis.)

    图  Shot A1、Shot A3、Shot B1、Shot B2中回收样品的EBSD表征结果:(a)~(d) 反极图,(e)~(h) Kernel平均取向差分布

    Figure  6.  (a)−(d) Inverse pole figures (IPF) and (e)−(h) corresponding Kernel average misorientation (KAM) maps of the recovered samples in Shot A1, Shot A3, Shot B1 and Shot B2

    图  层裂回收样品(Shot A4)与初始样品的XRD谱比较

    Figure  7.  Comparison of XRD patterns of recovered and as-cast sample in Shot A4

    表  1  不同冲击应力和脉宽加载条件下的层裂实验参数和实验结果

    Table  1.   Experimental parameters and results for different impact stresses and pulse durations

    Shot No. uimp/(m·s−1) σH/GPa Lf/mm Ls/mm τ/μs Δu/(m·s−1) σsp/GPa ˙ε/(105 s−1) ar/(107 m·s−2)
    A1 325 4.64 0.92 1.79 0.19 257.5 3.77 3.11 5.08
    A2 400 5.68 0.90 1.82 0.17 262.1 3.84 3.10 11.17
    A3 493 7.00 0.91 1.81 0.17 281.0 4.13 3.08 29.92
    A4 680 9.34 0.91 1.78 0.20 273.9 4.01 3.32 33.55
    B1 487 6.86 0.56 1.80 0.07 328.0 4.80 4.61 59.77
    B2 480 6.89 1.15 1.83 0.28 258.5 3.78 2.86 24.02
    下载: 导出CSV
  • [1] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017, 122: 448–511. doi: 10.1016/j.actamat.2016.08.081
    [2] LI W D, XIE D, LI D Y, et al. Mechanical behavior of high-entropy alloys [J]. Progress in Materials Science, 2021, 118: 100777. doi: 10.1016/j.pmatsci.2021.100777
    [3] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys [J]. Progress in Materials Science, 2014, 61: 1–93. doi: 10.1016/j.pmatsci.2013.10.001
    [4] CHEN X F, WANG Q, CHENG Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592(7856): 712–716. doi: 10.1038/s41586-021-03428-z
    [5] JIAN W R, XIE Z C, XU S Z, et al. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi [J]. Acta Materialia, 2020, 199: 352–369. doi: 10.1016/j.actamat.2020.08.044
    [6] XUN K H, ZHANG B Z, WANG Q, et al. Local chemical inhomogeneities in TiZrNb-based refractory high-entropy alloys [J]. Journal of Materials Science & Technology, 2023, 135: 221–230. doi: 10.1016/J.JMST.2022.06.047
    [7] ZHANG R P, ZHAO S T, DING J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581(7808): 283–287. doi: 10.1038/s41586-020-2275-z
    [8] LIU D, YU Q, KABRA S, et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin [J]. Science, 2022, 378(6623): 978–983. doi: 10.1126/science.abp8070
    [9] HE J Y, WANG Q, ZHANG H S, et al. Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy [J]. Science Bulletin, 2018, 63(6): 362–368. doi: 10.1016/j.scib.2018.01.022
    [10] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345(6201): 1153–1158. doi: 10.1126/science.1254581
    [11] YE Y X, LIU C Z, WANG H, et al. Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique [J]. Acta Materialia, 2018, 147: 78–89. doi: 10.1016/j.actamat.2018.01.014
    [12] SU Z Q, QUAN Z D, SHEN T L, et al. A novel BCC-structure Zr-Nb-Ti medium-entropy alloys (MEAs) with excellent structure and irradiation resistance [J]. Materials, 2022, 15(19): 6565. doi: 10.3390/ma15196565
    [13] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Materials Science and Engineering: A, 2004, 375: 213–218. doi: 10.1016/j.msea.2003.10.257
    [14] WU S J, WANG X D, LU J T, et al. Room-temperature mechanical properties of V20Nb20Mo20Ta20W20 high-entropy alloy [J]. Advanced Engineering Materials, 2018, 20(7): 1800028. doi: 10.1002/adem.201800028
    [15] HU S W, LI T J, SU Z Q, et al. A novel TiZrNb medium entropy alloy (MEA) with appropriate elastic modulus for biocompatible materials [J]. Materials Science and Engineering: B, 2021, 270: 115226. doi: 10.1016/j.mseb.2021.115226
    [16] HU S W, LI T J, LI X, et al. Electrochemical behavior, passive film characterization and in vitro biocompatibility of Ti-Zr-Nb medium-entropy alloys [J]. Journal of Materials Science, 2023, 58(2): 946–960. doi: 10.1007/s10853-022-08128-1
    [17] HU S W, LI T J, LI Q L, et al. Microstructure evolution, deformation mechanism, and mechanical properties of biomedical TiZrNb medium entropy alloy processed using equal channel angular pressing [J]. Intermetallics, 2022, 151: 107725. doi: 10.1016/j.intermet.2022.107725
    [18] HU S W, LI T J, SU Z Q, et al. Research on suitable strength, elastic modulus and abrasion resistance of Ti-Zr-Nb medium entropy alloys (MEAs) for implant adaptation [J]. Intermetallics, 2022, 140: 107401. doi: 10.1016/j.intermet.2021.107401
    [19] ELETI R R, STEPANOV N, YURCHENKO N, et al. Cross-kink unpinning controls the medium- to high-temperature strength of body-centered cubic NbTiZr medium-entropy alloy [J]. Scripta Materialia, 2022, 209: 114367. doi: 10.1016/j.scriptamat.2021.114367
    [20] SENKOV O N, RAO S, CHAPUT K J, et al. Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys [J]. Acta Materialia, 2018, 151: 201–215. doi: 10.1016/j.actamat.2018.03.065
    [21] ZHAO L, ZONG H X, DING X D, et al. Anomalous dislocation core structure in shock compressed bcc high-entropy alloys [J]. Acta Materialia, 2021, 209: 116801. doi: 10.1016/j.actamat.2021.116801
    [22] THOMAS S A, HAWKINS M C, MATTHES M K, et al. Dynamic strength properties and alpha-phase shock Hugoniot of iron and steel [J]. Journal of Applied Physics, 2018, 123(17): 175902. doi: 10.1063/1.5019484
    [23] CUI Y H, CAI J C, LI Z G, et al. Effect of porosity on dynamic response of additive manufacturing Ti-6Al-4V alloys [J]. Micromachines, 2022, 13(3): 408. doi: 10.3390/mi13030408
    [24] JIAO Z Y, LI Z G, WU F C, et al. Phase transition, twinning, and spall damage of NiTi shape memory alloys under shock loading [J]. Materials Science and Engineering: A, 2023, 869: 144775. doi: 10.1016/j.msea.2023.144775
    [25] ZHANG Z G, CHEN S, HONG Y F, et al. Multi-scale damage mechanism of hierarchically structured high-strength martensitic steels under shock loading [J]. International Journal of Plasticity, 2024, 175: 103945. doi: 10.1016/j.ijplas.2024.103945
    [26] KANEL G I. Spall fracture: methodological aspects, mechanisms and governing factors [J]. International Journal of Fracture, 2010, 163(1/2): 173–191. doi: 10.1007/s10704-009-9438-0
    [27] DAVISON L. Spall fracture [M]//Fundamentals of Shock Wave Propagation in Solids. Berlin, Heidelberg: Springer, 2008: 317–342.
    [28] ANTOUN T, CURRAN D R, RAZORENOV S V, et al. Spall fracture [M]. New York: Springer, 2003.
    [29] CHEVRIER P, KLEPACZKO J R. Spall fracture: mechanical and microstructural aspects [J]. Engineering Fracture Mechanics, 1999, 63(3): 273–294. doi: 10.1016/S0013-7944(99)00022-3
    [30] 周洪强, 张凤国, 潘昊, 等. 材料层裂研究的主要进展 [J]. 高压物理学报, 2019, 33(5): 050301. doi: 10.11858/gywlxb.20180670

    ZHOU H Q, ZHANG F G, PAN H, et al. Main progress in research on material spalling [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 050301. doi: 10.11858/gywlxb.20180670
    [31] 谭华. 实验冲击波物理 [M]. 北京: 国防工业出版社, 2018: 45−46, 64−65, 269−271.

    TAN H. Experimental shock wave physics [M]. Beijing: National Defense Industry Press, 2018: 45−46, 64−65, 269−271.
    [32] 蔡洋, 李超, 卢磊. 冲击载荷下金属材料的微结构-加载特性-层裂响应关系概述 [J]. 高压物理学报, 2021, 35(4): 040104. doi: 10.11858/gywlxb.20200648

    CAI Y, LI C, LU L. Effects of microstructure and loading characteristics on spallation of metallic materials under shock loading [J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040104. doi: 10.11858/gywlxb.20200648
    [33] LI C, YANG K, TANG X C, et al. Spall strength of a mild carbon steel: effects of tensile stress history and shock-induced microstructure [J]. Materials Science and Engineering: A, 2019, 754: 461–469. doi: 10.1016/j.msea.2019.03.019
    [34] GLUZMAN V D, KANEL G I. Measurement of the tensile stresses behind a spalling plane [J]. Journal of Applied Mechanics and Technical Physics, 1984, 24(4): 582–585. doi: 10.1007/BF00907912
    [35] ROMANCHENKO V I, STEPANOV G V. Dependence of the critical stresses on the loading time parameters during spall in copper, aluminum, and steel [J]. Journal of Applied Mechanics and Technical Physics, 1980, 21(4): 555–561. doi: 10.1007/BF00916495
    [36] ZHANG N B, XU J, FENG Z D, et al. Shock compression and spallation damage of high-entropy alloy Al0.1CoCrFeNi [J]. Journal of Materials Science & Technology, 2022, 128: 1–9. doi: 10.1016/j.jmst.2022.02.056
    [37] CUI A R, HU S C, ZHANG S, et al. Spall response of medium-entropy alloy CrCoNi under plate impact [J]. International Journal of Mechanical Sciences, 2023, 252: 108331. doi: 10.1016/j.ijmecsci.2023.108331
    [38] CHENG J C, QIN H L, LI C, et al. Deformation and damage of equiatomic CoCrFeNi high-entropy alloy under plate impact loading [J]. Materials Science and Engineering: A, 2023, 862: 144432. doi: 10.1016/j.msea.2022.144432
    [39] ZHANG N B, TANG Z J, LIN Z H, et al. Deformation and damage of heterogeneous-structured high-entropy alloy CrMnFeCoNi under plate impact [J]. Materials Science and Engineering: A, 2022, 843: 143069. doi: 10.1016/j.msea.2022.143069
    [40] QI M L, BIE B X, ZHAO F P, et al. A metallography and X-ray tomography study of spall damage in ultrapure Al [J]. AIP Advances, 2014, 4(7): 077118. doi: 10.1063/1.4890310
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  64
  • PDF下载量:  30
出版历程
  • 收稿日期:  2024-04-01
  • 修回日期:  2024-05-06
  • 网络出版日期:  2024-07-12
  • 刊出日期:  2024-12-05

目录

/

返回文章
返回