[1] |
VEPŘEK S. The search for novel, superhard materials [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999, 17(5): 2401–2420.
|
[2] |
IRIFUNE T, KURIO A, SAKAMOTO S, et al. Ultrahard polycrystalline diamond from graphite [J]. Nature, 2003, 421(6923): 599–600. doi: 10.1038/421599b
|
[3] |
MONTEIRO S N, SKURY A L D, DE AZEVEDO M G, et al. Cubic boron nitride competing with diamond as a superhard engineering material: an overview [J]. Journal of Materials Research and Technology, 2013, 2(1): 68–74. doi: 10.1016/j.jmrt.2013.03.004
|
[4] |
SOLOZHENKO V L, ANDRAULT D, FIQUET G, et al. Synthesis of superhard cubic BC2N [J]. Applied Physics Letters, 2001, 78(10): 1385–1387. doi: 10.1063/1.1337623
|
[5] |
ZHAO Y, HE D W, DAEMEN L L, et al. Superhard B-C-N materials synthesized in nanostructured bulks [J]. Journal of Materials Research, 2002, 17(12): 3139–3145. doi: 10.1557/JMR.2002.0454
|
[6] |
DONG H N, HE D W, DUFFY T S, et al. Elastic moduli and strength of nanocrystalline cubic BC2N from X-ray diffraction under nonhydrostatic compression [J]. Physical Review B, 2009, 79(1): 014105. doi: 10.1103/PhysRevB.79.014105
|
[7] |
TANG M J, HE D W, WANG W D, et al. Superhard solid solutions of diamond and cubic boron nitride [J]. Scripta Materialia, 2012, 66(10): 781–784. doi: 10.1016/j.scriptamat.2012.02.006
|
[8] |
WANG P, HE D W, WANG L P, et al. Diamond-cBN alloy: a universal cutting material [J]. Applied Physics Letters, 2015, 107(10): 101901. doi: 10.1063/1.4929728
|
[9] |
LIU Y J, HE D W, KOU Z L, et al. Hardness and thermal stability enhancement of polycrystalline diamond compact through additive hexagonal boron nitride [J]. Scripta Materialia, 2018, 149: 1–5. doi: 10.1016/j.scriptamat.2018.01.034
|
[10] |
LI B Z, YING P, GAO Y F, et al. Heterogeneous diamond-cBN composites with superb toughness and hardness [J]. Nano Letters, 2022, 22(12): 4979–4984. doi: 10.1021/acs.nanolett.2c01716
|
[11] |
DRORY M D, DAUSKARDT R H, KANT A, et al. Fracture of synthetic diamond [J]. Journal of Applied Physics, 1995, 78(5): 3083–3088. doi: 10.1063/1.360060
|
[12] |
DUB S, LYTVYN P, STRELCHUK V, et al. Vickers hardness of diamond and cBN single crystals: AFM approach [J]. Crystals, 2017, 7(12): 369. doi: 10.3390/cryst7120369
|
[13] |
TIAN Y J, XU B, YU D L, et al. Ultrahard nanotwinned cubic boron nitride [J]. Nature, 2013, 493(7432): 385–388. doi: 10.1038/nature11728
|
[14] |
HUANG Q, YU D L, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510(7504): 250–253. doi: 10.1038/nature13381
|
[15] |
LI J, SHAO G, MA Y, et al. Processing and properties of polycrystalline cubic boron nitride reinforced by SiC whiskers [J]. International Journal of Applied Ceramic Technology, 2019, 16(1): 32–38. doi: 10.1111/ijac.13077
|
[16] |
ZHAO Y S, QIAN J, DAEMEN L L, et al. Enhancement of fracture toughness in nanostructured diamond-SiC composites [J]. Applied Physics Letters, 2004, 84(8): 1356–1358. doi: 10.1063/1.1650556
|
[17] |
HONG S M, AKAISHI M, YAMAOKA S. High-pressure synthesis of heat-resistant diamond composite using a diamond-TiC0.6 powder mixture [J]. Journal of the American Ceramic Society, 1999, 82(9): 2497–2501. doi: 10.1111/j.1151-2916.1999.tb02109.x
|
[18] |
WANG H K, HE D W, XU C, et al. Nanostructured diamond-TiC composites with high fracture toughness [J]. Journal of Applied Physics, 2013, 113(4): 043505. doi: 10.1063/1.4789004
|
[19] |
ZHOU L, LI Y Y, KOU Z L, et al. Heterogeneous diamond-TiC composites with high fracture toughness and electrical conductivity [J]. Journal of the European Ceramic Society, 2024, 44(8): 4887–4894. doi: 10.1016/J.JEURCERAMSOC.2024.02.042
|
[20] |
LI K, MO P C, CHEN J R, et al. Phase composition, microstructure, and mechanical properties of PcBN composites with Ti and Ti-Al binders: effects of holding time and synthesis pressure [J]. International Journal of Refractory Metals and Hard Materials, 2024, 118: 106434. doi: 10.1016/j.ijrmhm.2023.106434
|
[21] |
WU J H, ZHANG H L, ZHANG Y, et al. The role of Ti coating in enhancing tensile strength of Al/diamond composites [J]. Materials Science and Engineering: A, 2013, 565: 33–37. doi: 10.1016/j.msea.2012.11.124
|
[22] |
SHA X H, YUE W, ZHANG H C, et al. Enhanced oxidation and graphitization resistance of polycrystalline diamond sintered with Ti-coated diamond powders [J]. Journal of Materials Science & Technology, 2020, 43: 64–73. doi: 10.1016/j.jmst.2020.01.031
|
[23] |
SHA X H, FENG B, YUE W, et al. Comparison of tribological behaviors of polycrystalline diamonds synthesized by titanium- and boron-coated diamond particles [J]. Diamond and Related Materials, 2022, 128: 109242. doi: 10.1016/j.diamond.2022.109242
|
[24] |
CHEN Z R, MA D J, WANG S M, et al. Wear resistance and thermal stability enhancement of PDC sintered with Ti-coated diamond and cBN [J]. International Journal of Refractory Metals and Hard Materials, 2020, 92: 105278. doi: 10.1016/j.ijrmhm.2020.105278
|
[25] |
KLIMCZYK P, BENKO E, LAWNICZAK-JABLONSKA K, et al. Cubic boron nitride: Ti/TiN composites: hardness and phase equilibrium as function of temperature [J]. Journal of Alloys and Compounds, 2004, 382(1/2): 195–205. doi: 10.1016/j.jallcom.2004.04.140
|
[26] |
CHEN C, MO P C, CHEN J R, et al. Effects of different binder systems on the reaction mechanism, microstructure and mechanical properties of PcBN composites [J]. Diamond and Related Materials, 2023, 134: 109797. doi: 10.1016/j.diamond.2023.109797
|
[27] |
ARAMIAN A, SADEGHIAN Z, NARIMANI M, et al. A review on the microstructure and properties of TiC and Ti (C,N) based cermets [J]. International Journal of Refractory Metals and Hard Materials, 2023, 115: 106320. doi: 10.1016/J.IJRMHM.2023.106320
|
[28] |
PENG Y, MIAO H Z, PENG Z J. Development of TiCN-based cermets: mechanical properties and wear mechanism [J]. International Journal of Refractory Metals and Hard Materials, 2013, 39: 78–89. doi: 10.1016/j.ijrmhm.2012.07.001
|
[29] |
RITCHIE R O. The conflicts between strength and toughness [J]. Nature Materials, 2011, 10(11): 817–822. doi: 10.1038/nmat3115
|
[30] |
SOLOZHENKO V L, KURAKEVYCH O O, LE GODEC Y. Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride [J]. Advanced Materials, 2012, 24(12): 1540–1544. doi: 10.1002/adma.201104361
|
[31] |
CHEN Z R, MA D J, WANG S M, et al. Enhanced thermal and mechanical performance of polycrystalline diamond compact by introducing polycrystalline cubic boron nitride at the grain boundaries [J]. International Journal of Refractory Metals and Hard Materials, 2021, 96: 105468. doi: 10.1016/j.ijrmhm.2020.105468
|