B-C-N-Ti四元超硬复合材料的高压烧结

黄鸿东 于晓辉 贺端威

黄鸿东, 于晓辉, 贺端威. B-C-N-Ti四元超硬复合材料的高压烧结[J]. 高压物理学报, 2024, 38(4): 041102. doi: 10.11858/gywlxb.20240769
引用本文: 黄鸿东, 于晓辉, 贺端威. B-C-N-Ti四元超硬复合材料的高压烧结[J]. 高压物理学报, 2024, 38(4): 041102. doi: 10.11858/gywlxb.20240769
HUANG Hongdong, YU Xiaohui, HE Duanwei. High Pressure Sintering of B-C-N-Ti Quaternary Superhard Composites[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 041102. doi: 10.11858/gywlxb.20240769
Citation: HUANG Hongdong, YU Xiaohui, HE Duanwei. High Pressure Sintering of B-C-N-Ti Quaternary Superhard Composites[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 041102. doi: 10.11858/gywlxb.20240769

B-C-N-Ti四元超硬复合材料的高压烧结

doi: 10.11858/gywlxb.20240769
基金项目: 国家重点研发计划(2023YFA1406200)
详细信息
    作者简介:

    黄鸿东(1997-),男,硕士研究生,主要从事高压下超硬材料的合成研究. E-mail:hongdonghuangsss@163.com

    通讯作者:

    于晓辉(1981-),男,博士,研究员,主要从事高压物理及材料研究. E-mail:yuxh@iphy.ac.cn

    贺端威(1969-),男,博士,教授,主要从事高压物理、大腔体静高压技术以及超硬材料研究. E-mail:duanweihe@scu.edu.cn

  • 中图分类号: O521.3; O521.2

High Pressure Sintering of B-C-N-Ti Quaternary Superhard Composites

  • 摘要: 以金刚石、立方氮化硼(cBN)和钛(Ti)为初始材料,通过高温高压反应烧结制备了B-C-N-Ti四元超硬复合材料。结果表明:在高温高压下,Ti与金刚石及cBN反应生成TiC0.7N0.3和TiB2;TiC0.7N0.3作为黏结相以键合金刚石和cBN晶粒,适量Ti的加入可以有效地提高烧结体的韧性;反应生成的TiC0.7N0.3和TiB2等陶瓷相以及cBN对金刚石晶粒的包裹提高了烧结体的抗氧化性。当金刚石、cBN和Ti的摩尔比为2∶1∶0.10时,在压力为12 GPa、温度为2000℃、保温5 min的条件下得到的烧结样品性能较好,其维氏硬度达到 (49.0±1.2) GPa,韧性为(14.2±0.6) MPa·m1/2,空气氛围下的起始氧化温度为921 ℃。

     

  • 图  不同Ti含量下金刚石-Ti-cBN烧结样品(12 GPa、2000 ℃)的XRD谱

    Figure  1.  XRD patterns of diamond-Ti-cBN composites sintered at 12 GPa and 2000 ℃ with different contents of Ti

    图  金刚石-Ti-cBN烧结样品断裂面的SEM图像

    Figure  2.  SEM images of the fracture surfaces of diamond-Ti-cBN sintered composites

    图  BND2Ti0.10 的SEM图像以及B、C、N和 Ti 元素的EDS图谱

    Figure  3.  SEM image and the corresponding EDS mapping of B, C, N, and Ti element for BND2Ti0.10 specimen

    图  不同Ti含量的金刚石-Ti-cBN烧结样品的维氏硬度和韧性

    Figure  4.  Vickers hardness and fracture toughness of diamond-Ti-cBN specimens with different contents of Ti

    图  BND2Ti0.10 样品在49 N加载下的压痕SEM图像

    Figure  5.  SEM images of the Vickers hardness indentation for BND2Ti0.10 specimens at the applied load of 49 N

    图  空气氛围下加热至1400 ℃的BND2Ti0.10烧结样品的TG-DSC曲线

    Figure  6.  TG-DSC curve of BND2Ti0.10 specimen to 1400 ℃ under air condition

  • [1] VEPŘEK S. The search for novel, superhard materials [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999, 17(5): 2401–2420.
    [2] IRIFUNE T, KURIO A, SAKAMOTO S, et al. Ultrahard polycrystalline diamond from graphite [J]. Nature, 2003, 421(6923): 599–600. doi: 10.1038/421599b
    [3] MONTEIRO S N, SKURY A L D, DE AZEVEDO M G, et al. Cubic boron nitride competing with diamond as a superhard engineering material: an overview [J]. Journal of Materials Research and Technology, 2013, 2(1): 68–74. doi: 10.1016/j.jmrt.2013.03.004
    [4] SOLOZHENKO V L, ANDRAULT D, FIQUET G, et al. Synthesis of superhard cubic BC2N [J]. Applied Physics Letters, 2001, 78(10): 1385–1387. doi: 10.1063/1.1337623
    [5] ZHAO Y, HE D W, DAEMEN L L, et al. Superhard B-C-N materials synthesized in nanostructured bulks [J]. Journal of Materials Research, 2002, 17(12): 3139–3145. doi: 10.1557/JMR.2002.0454
    [6] DONG H N, HE D W, DUFFY T S, et al. Elastic moduli and strength of nanocrystalline cubic BC2N from X-ray diffraction under nonhydrostatic compression [J]. Physical Review B, 2009, 79(1): 014105. doi: 10.1103/PhysRevB.79.014105
    [7] TANG M J, HE D W, WANG W D, et al. Superhard solid solutions of diamond and cubic boron nitride [J]. Scripta Materialia, 2012, 66(10): 781–784. doi: 10.1016/j.scriptamat.2012.02.006
    [8] WANG P, HE D W, WANG L P, et al. Diamond-cBN alloy: a universal cutting material [J]. Applied Physics Letters, 2015, 107(10): 101901. doi: 10.1063/1.4929728
    [9] LIU Y J, HE D W, KOU Z L, et al. Hardness and thermal stability enhancement of polycrystalline diamond compact through additive hexagonal boron nitride [J]. Scripta Materialia, 2018, 149: 1–5. doi: 10.1016/j.scriptamat.2018.01.034
    [10] LI B Z, YING P, GAO Y F, et al. Heterogeneous diamond-cBN composites with superb toughness and hardness [J]. Nano Letters, 2022, 22(12): 4979–4984. doi: 10.1021/acs.nanolett.2c01716
    [11] DRORY M D, DAUSKARDT R H, KANT A, et al. Fracture of synthetic diamond [J]. Journal of Applied Physics, 1995, 78(5): 3083–3088. doi: 10.1063/1.360060
    [12] DUB S, LYTVYN P, STRELCHUK V, et al. Vickers hardness of diamond and cBN single crystals: AFM approach [J]. Crystals, 2017, 7(12): 369. doi: 10.3390/cryst7120369
    [13] TIAN Y J, XU B, YU D L, et al. Ultrahard nanotwinned cubic boron nitride [J]. Nature, 2013, 493(7432): 385–388. doi: 10.1038/nature11728
    [14] HUANG Q, YU D L, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510(7504): 250–253. doi: 10.1038/nature13381
    [15] LI J, SHAO G, MA Y, et al. Processing and properties of polycrystalline cubic boron nitride reinforced by SiC whiskers [J]. International Journal of Applied Ceramic Technology, 2019, 16(1): 32–38. doi: 10.1111/ijac.13077
    [16] ZHAO Y S, QIAN J, DAEMEN L L, et al. Enhancement of fracture toughness in nanostructured diamond-SiC composites [J]. Applied Physics Letters, 2004, 84(8): 1356–1358. doi: 10.1063/1.1650556
    [17] HONG S M, AKAISHI M, YAMAOKA S. High-pressure synthesis of heat-resistant diamond composite using a diamond-TiC0.6 powder mixture [J]. Journal of the American Ceramic Society, 1999, 82(9): 2497–2501. doi: 10.1111/j.1151-2916.1999.tb02109.x
    [18] WANG H K, HE D W, XU C, et al. Nanostructured diamond-TiC composites with high fracture toughness [J]. Journal of Applied Physics, 2013, 113(4): 043505. doi: 10.1063/1.4789004
    [19] ZHOU L, LI Y Y, KOU Z L, et al. Heterogeneous diamond-TiC composites with high fracture toughness and electrical conductivity [J]. Journal of the European Ceramic Society, 2024, 44(8): 4887–4894. doi: 10.1016/J.JEURCERAMSOC.2024.02.042
    [20] LI K, MO P C, CHEN J R, et al. Phase composition, microstructure, and mechanical properties of PcBN composites with Ti and Ti-Al binders: effects of holding time and synthesis pressure [J]. International Journal of Refractory Metals and Hard Materials, 2024, 118: 106434. doi: 10.1016/j.ijrmhm.2023.106434
    [21] WU J H, ZHANG H L, ZHANG Y, et al. The role of Ti coating in enhancing tensile strength of Al/diamond composites [J]. Materials Science and Engineering: A, 2013, 565: 33–37. doi: 10.1016/j.msea.2012.11.124
    [22] SHA X H, YUE W, ZHANG H C, et al. Enhanced oxidation and graphitization resistance of polycrystalline diamond sintered with Ti-coated diamond powders [J]. Journal of Materials Science & Technology, 2020, 43: 64–73. doi: 10.1016/j.jmst.2020.01.031
    [23] SHA X H, FENG B, YUE W, et al. Comparison of tribological behaviors of polycrystalline diamonds synthesized by titanium- and boron-coated diamond particles [J]. Diamond and Related Materials, 2022, 128: 109242. doi: 10.1016/j.diamond.2022.109242
    [24] CHEN Z R, MA D J, WANG S M, et al. Wear resistance and thermal stability enhancement of PDC sintered with Ti-coated diamond and cBN [J]. International Journal of Refractory Metals and Hard Materials, 2020, 92: 105278. doi: 10.1016/j.ijrmhm.2020.105278
    [25] KLIMCZYK P, BENKO E, LAWNICZAK-JABLONSKA K, et al. Cubic boron nitride: Ti/TiN composites: hardness and phase equilibrium as function of temperature [J]. Journal of Alloys and Compounds, 2004, 382(1/2): 195–205. doi: 10.1016/j.jallcom.2004.04.140
    [26] CHEN C, MO P C, CHEN J R, et al. Effects of different binder systems on the reaction mechanism, microstructure and mechanical properties of PcBN composites [J]. Diamond and Related Materials, 2023, 134: 109797. doi: 10.1016/j.diamond.2023.109797
    [27] ARAMIAN A, SADEGHIAN Z, NARIMANI M, et al. A review on the microstructure and properties of TiC and Ti (C,N) based cermets [J]. International Journal of Refractory Metals and Hard Materials, 2023, 115: 106320. doi: 10.1016/J.IJRMHM.2023.106320
    [28] PENG Y, MIAO H Z, PENG Z J. Development of TiCN-based cermets: mechanical properties and wear mechanism [J]. International Journal of Refractory Metals and Hard Materials, 2013, 39: 78–89. doi: 10.1016/j.ijrmhm.2012.07.001
    [29] RITCHIE R O. The conflicts between strength and toughness [J]. Nature Materials, 2011, 10(11): 817–822. doi: 10.1038/nmat3115
    [30] SOLOZHENKO V L, KURAKEVYCH O O, LE GODEC Y. Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride [J]. Advanced Materials, 2012, 24(12): 1540–1544. doi: 10.1002/adma.201104361
    [31] CHEN Z R, MA D J, WANG S M, et al. Enhanced thermal and mechanical performance of polycrystalline diamond compact by introducing polycrystalline cubic boron nitride at the grain boundaries [J]. International Journal of Refractory Metals and Hard Materials, 2021, 96: 105468. doi: 10.1016/j.ijrmhm.2020.105468
  • 加载中
图(6)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  78
  • PDF下载量:  41
出版历程
  • 收稿日期:  2024-03-29
  • 修回日期:  2024-04-25
  • 网络出版日期:  2024-07-08
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回