基于PIV实验研究带破口双层圆柱结构附近气泡的动力学特性

孙远翔 秦嘉鸿 陈岩武 王成

孙远翔, 秦嘉鸿, 陈岩武, 王成. 基于PIV实验研究带破口双层圆柱结构附近气泡的动力学特性[J]. 高压物理学报, 2024, 38(6): 064104. doi: 10.11858/gywlxb.20240756
引用本文: 孙远翔, 秦嘉鸿, 陈岩武, 王成. 基于PIV实验研究带破口双层圆柱结构附近气泡的动力学特性[J]. 高压物理学报, 2024, 38(6): 064104. doi: 10.11858/gywlxb.20240756
SUN Yuanxiang, QIN Jiahong, CHEN Yanwu, WANG Cheng. Bubble Dynamics Characteristics Near Double-Layer Cylindrical Structures with a Hole Based on PIV Experiments[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064104. doi: 10.11858/gywlxb.20240756
Citation: SUN Yuanxiang, QIN Jiahong, CHEN Yanwu, WANG Cheng. Bubble Dynamics Characteristics Near Double-Layer Cylindrical Structures with a Hole Based on PIV Experiments[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064104. doi: 10.11858/gywlxb.20240756

基于PIV实验研究带破口双层圆柱结构附近气泡的动力学特性

doi: 10.11858/gywlxb.20240756
基金项目: 国家自然科学基金(12141201,12221002)
详细信息
    作者简介:

    孙远翔(1967-),男,博士,副教授,主要从事水下爆炸研究. E-mail:sunyuanxiang002@126.com

    通讯作者:

    王 成(1972-),男,博士,教授,主要从事爆炸力学研究. E-mail:wangcheng@bit.edu.cn

  • 中图分类号: O383; O521.9

Bubble Dynamics Characteristics Near Double-Layer Cylindrical Structures with a Hole Based on PIV Experiments

  • 摘要: 近场水下爆炸冲击波破坏双壳体潜艇外壳结构后,后续的气泡脉动和射流载荷会对潜艇的内壳体继续造成严重毁伤,因此研究破口附近的气泡脉动和气泡载荷特性具有重要意义。基于受冲击波毁伤后的双壳体潜艇结构,制作预制圆形破口的双层圆柱结构模型,将电火花装置作为气泡发生源,开展了不同爆距参数(爆距与气泡的最大直径之比)和不同破口参数(破口直径与气泡的最大直径之比)条件下气泡与带破口双层圆柱结构的相互作用实验。通过高速摄影机捕捉气泡在双层圆柱结构附近的脉动和射流形成过程,采用粒子图像测速技术对爆炸流场速度进行测试,得到气泡溃灭后产生的水射流速度,同时采用压力传感器测量内层圆柱壳壁面处的压力载荷。实验结果表明:爆距参数决定了内板壁面所受压力的载荷形式、气泡溃灭后是否产生有效射流以及产生的射流速度;当爆距参数在一定范围内时,破口参数影响气泡的脉动以及气泡溃灭后产生的水射流方向。

     

  • 图  双层圆柱模型(单位:mm)

    Figure  1.  Double layered cylindrical model (Unit:mm)

    图  实验装置

    Figure  2.  Experimental device

    图  PIV原理示意图

    Figure  3.  Schematic diagram of PIV method

    图  参照组实验(工况1)的气泡脉动过程

    Figure  4.  Bubble pulsation process of the reference group experiment (Case 1)

    图  有限元模型

    Figure  5.  Finite element model

    图  实验工况3气泡最大收缩速度测量结果

    Figure  6.  Measurement results of maximum bubble contraction velocity of Case 3

    图  自由场条件下不同工况的压力时程曲线

    Figure  7.  Pressure-time history curves of different cases under free field conditions

    图  自由场和模型2的压力-爆距曲线对比

    Figure  8.  Comparison of pressure-explosion distance curves between the free field and Model 2

    图  不同爆距下模型2的压力时程曲线

    Figure  9.  Pressure-time history curves of Model 2 with different γ

    图  10  γ = 0.2时模型2的气泡脉动过程

    Figure  10.  Bubble pulsation process of Model 2 with γ = 0.2

    图  11  γ = 0.6时模型2的气泡脉动过程

    Figure  11.  Bubble pulsation process of Model 2 with γ = 0.6

    图  12  γ = 0.6时模型3的气泡脉动过程

    Figure  12.  Bubble pulsation process of Model 3 with γ = 0.6

    图  13  γ = 0.2时不同模型破口附近的气泡脉动形态

    Figure  13.  Bubble pulsation patterns near different models with γ = 0.2

    图  14  γ = 0时不同模型破口附近的气泡脉动形态

    Figure  14.  Bubble pulsation patterns near different models with γ = 0

    图  15  工况M3-6和工况M3-7气泡的射流形态

    Figure  15.  Bubble jet pattern of Case M3-6 and Case M3-7

    图  16  几种典型工况下瞬时射流速度的PIV结果

    Figure  16.  Jet velocities obtaied by PIV for several typical cases

    图  17  γ = 0.2时不同模型破口附近的气泡射流形态

    Figure  17.  Bubble jet pattern near different models with γ = 0.2

    图  18  不同模型破口附近射流的形成条件

    Figure  18.  Conditions of jet formation near different models

    表  1  双层圆柱模型的尺寸以及参数

    Table  1.   Dimensions and parameters of the double layered cylindrical model

    Model No.Outer radius/mmInner radius/mmPlate thickness/mmdW/mmdN/mm
    170455106
    270455206
    370455306
    下载: 导出CSV

    表  2  模型1~模型3的实验工况

    Table  2.   Experimental cases for Model 1–Model 3

    Model Case $ \lambda $ $ \gamma $
    1 M1-1 0.2 0
    M1-2 0.2 0.1
    M1-3 0.2 0.2
    M1-4 0.2 0.3
    M1-5 0.2 0.4
    M1-6 0.2 0.6
    M1-7 0.2 0.8
    2 M2-1 0.4 0
    M2-2 0.4 0.1
    M2-3 0.4 0.2
    M2-4 0.4 0.3
    M2-5 0.4 0.4
    M2-6 0.4 0.6
    M2-7 0.4 0.8
    3 M3-1 0.6 0
    M3-2 0.6 0.1
    M3-3 0.6 0.2
    M3-4 0.6 0.3
    M3-5 0.6 0.4
    M3-6 0.6 0.6
    M3-7 0.6 0.8
    下载: 导出CSV

    表  3  炸药的材料模型及状态方程参数

    Table  3.   Material model and equation of state parameter of the explosive

    $ {\rho }_{0} $/($ \mathrm{k}\mathrm{g}\cdot {\mathrm{m}}^{-3} $) $ D_{\mathrm{C}\mathrm{J}} $/$ \left(\mathrm{m}\cdot {\mathrm{s}}^{-1}\right) $ $ p_{\mathrm{C}\mathrm{J}} $/GPa EZ/GPa A/GPa B/GPa $ {R}_{1} $ $ {R}_{2} $ $ \omega $
    1630 6930 21.0 7.17 373.7 3.74 4.15 0.9 0.35
    下载: 导出CSV

    表  4  水的材料模型及状态方程参数

    Table  4.   Material model and equation of state parameter of water

    $ {\rho }_{0} $/($ \mathrm{k}\mathrm{g}\cdot {\mathrm{m}}^{-3} $) $ {C}_{0} $/GPa $ {C}_{1} $/GPa $ {C}_{2} $/GPa $ {C}_{3} $/GPa $ {C}_{4} $ $ {C}_{5} $ $ {C}_{6} $ EC
    $ 1010 $ $ 1.01\times {10}^{-4} $ 2.036 8.432 8.014 0.4934 1.3937 0 $ 2.05\times {10}^{-4} $
    下载: 导出CSV

    表  5  实验与数值模拟结果对比

    Table  5.   Comparison between experimental and simulation results

    db Tb vb
    Exp./cm Sim./cm Error/% Exp./ms Sim./ms Error/% Exp./(m·s−1) Sim./(m·s−1) Error/%
    5.00 4.99 0.2 4.80 4.42 8.5 43.118 49.069 12.1
    下载: 导出CSV

    表  6  自由场压力测量实验结果

    Table  6.   Experimental results of free field pressure measurement

    CaseDF/cmShock wave pressure/MPaPressure of bubble secondary wave/MPa
    F-140.5737.692
    F-250.4545.818
    F-360.3724.772
    F-470.2913.798
    F-580.2612.482
    下载: 导出CSV

    表  7  模型2的压力实验结果

    Table  7.   Pressure experiment results of Model 2

    Case D/cm $ \gamma $ Shock wave
    pressure/MPa
    Pressure of secondary
    wave/MPa
    Pressure of triple
    wave/MPa
    Bubble jet
    load/MPa
    M-1 1 0.2 0.594 3.575 1.025
    M-2 2 0.4 0.466 2.085 1.297
    M-3 3 0.6 0.381 6.325 2.338 0.404
    M-4 4 0.8 0.284 7.317 3.032
    M-5 5 1.0 0.267 2.332 0.372
    下载: 导出CSV

    表  8  模型1的气泡脉动实验结果

    Table  8.   Bubble pulsation experiment results of Model 1

    Case $ \gamma $ Maximum bubble
    diameter/cm
    Bubble pulsation
    period/ms
    Jet direction Instantaneous jet
    velocity/($ \mathrm{m}\cdot {\mathrm{s}}^{-1} $)
    Mean jet velocity/
    ($ \mathrm{m}\cdot {\mathrm{s}}^{-1} $)
    M1-1 0 4.50 4.0 Upward and downward 34.75 19.55
    M1-2 0.1 4.95 4.5 Upward and downward 41.44 25.56
    M1-3 0.2 5.08 4.9 Upward and downward 38.56 17.49
    M1-4 0.3 4.95 5.0 Upward and downward 38.88 12.68
    M1-5 0.4 5.02 5.1 Upward and downward 41.68 12.01
    M1-6 0.6 5.01 5.0 Upward 24.51 7.85
    M1-7 0.8 5.02 4.9
    下载: 导出CSV

    表  9  模型2的气泡脉动实验结果

    Table  9.   Bubble pulsation experiment results of Model 2

    Case $ \gamma $ Maximum bubble
    diameter/cm
    Bubble pulsation
    period/ms
    Jet direction Instantaneous jet
    velocity/($ \mathrm{m}\cdot {\mathrm{s}}^{-1} $)
    Mean jet velocity/
    ($ \mathrm{m}\cdot {\mathrm{s}}^{-1} $)
    M2-1 0 4.97 4.4 Upward and downward 44.74 25.08
    M2-2 0.1 4.95 4.8 Upward and downward 42.18 23.03
    M2-3 0.2 5.15 5.0 Upward and downward 44.31 17.88
    M2-4 0.3 5.05 4.9 Upward and downward 42.01 12.94
    M2-5 0.4 5.00 4.7 Upward 40.13 10.42
    M2-6 0.6 5.19 5.1 Upward 5.61
    M2-7 0.8 5.00 5.0
    下载: 导出CSV

    表  10  模型3的气泡脉动实验结果

    Table  10.   Bubble pulsation experiment results of Model 3

    Case $ \gamma $ Maximum bubble
    diameter/cm
    Bubble pulsation
    period/ms
    Jet direction Instantaneous jet
    velocity/($ \mathrm{m}\cdot {\mathrm{s}}^{-1} $)
    Mean jet velocity/
    ($ \mathrm{m}\cdot {\mathrm{s}}^{-1} $)
    M3-1 0 5.37 4.8 Upward 40.91 30.49
    M3-2 0.1 4.90 4.9 Upward 43.17 26.92
    M3-3 0.2 4.75 5.0 Upward 42.79 16.37
    M3-4 0.3 5.01 5.0 Upward 46.51 17.69
    M3-5 0.4 4.95 4.8 Upward 28.76 9.38
    M3-6 0.6 4.98 4.9 Upward 2.88
    M3-7 0.8 5.00 5.0
    下载: 导出CSV
  • [1] 王玉, 卢熹, 张方方, 等. 反潜鱼雷战斗部对典型潜艇目标毁伤效应研究 [J]. 兵器装备工程学报, 2021, 42(12): 112–116. doi: 10.11809/bqzbgcxb2021.12.016

    WANG Y, LU X, ZHANG F F, et al. Damage effect of anti-submarine torpedo warhead on typical submarine targets [J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 112–116. doi: 10.11809/bqzbgcxb2021.12.016
    [2] 贺铭, 张阿漫, 刘云龙. 近场水下爆炸气泡与双层破口结构的相互作用 [J]. 爆炸与冲击, 2020, 40(11): 111402. doi: 10.11883/bzycj-2020-0110

    HE M, ZHANG A M, LIU Y L. Interaction of the underwater explosion bubbles and nearby double-layer structures with circular holes [J]. Explosion and Shock Waves, 2020, 40(11): 111402. doi: 10.11883/bzycj-2020-0110
    [3] 吴林杰, 侯海量, 朱锡, 等. 水下接触爆炸下防雷舱舷侧空舱的内压载荷特性仿真研究 [J]. 兵工学报, 2017, 38(1): 143–150. doi: 10.3969/j.issn.1000-1093.2017.01.019

    WU L J, HOU H L, ZHU X, et al. Numerical simulation on inside load characteristics of broadside cabin of defensive structure subjected to underwater contact explosion [J]. Acta Armamentarii, 2017, 38(1): 143–150. doi: 10.3969/j.issn.1000-1093.2017.01.019
    [4] 杨棣, 姚熊亮, 张玮, 等. 水下近场及接触爆炸作用下双层底结构损伤试验研究 [J]. 振动与冲击, 2015, 34(2): 161–165, 186. doi: 10.13465/j.cnki.jvs.2015.02.028

    YANG D, YAO X L, ZHANG W, et al. Experimental on double bottom’s structural damage under underwater near-field and contact explosions [J]. Journal of Vibration and Shock, 2015, 34(2): 161–165, 186. doi: 10.13465/j.cnki.jvs.2015.02.028
    [5] 苏标, 姚熊亮, 孙龙泉, 等. 水下接触爆炸作用下双层加筋板架结构的损伤特征 [J]. 兵工学报, 2021, 42(Suppl 1): 127–134. doi: 10.3969/j.issn.1000-1093.2021.S1.016

    SU B, YAO X L, SUN L Q, et al. Damage characteristics of double-layer stiffened shell subjected to underwater contact explosion [J]. Acta Armamentarii, 2021, 42(Suppl 1): 127–134. doi: 10.3969/j.issn.1000-1093.2021.S1.016
    [6] 孙远翔, 刘新, 陈岩武, 等. 水下爆炸气泡射流载荷及对结构毁伤研究进展 [J]. 舰船科学技术, 2024, 46(1): 1–7. doi: 10.3404/j.issn.1672-7649.2024.01.001

    SUN Y X, LIU X, CHEN Y W, et al. Research progress of underwater explosion bubble jet and its damage to structures [J]. Ship Science and Technology, 2024, 46(1): 1–7. doi: 10.3404/j.issn.1672-7649.2024.01.001
    [7] 刘靖晗, 唐廷, 韦灼彬, 等. 刚性柱附近浅水爆炸荷载特性研究 [J]. 高压物理学报, 2019, 33(5): 055104. doi: 10.11858/gywlxb.20180704

    LIU J H, TANG T, WEI Z B, et al. Pressure characteristics of shallow water explosion near the rigid column [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055104. doi: 10.11858/gywlxb.20180704
    [8] 姚熊亮, 刘文韬, 张阿漫, 等. 水下爆炸气泡及其对结构毁伤研究综述 [J]. 中国舰船研究, 2016, 11(1): 36–45. doi: 10.3969/j.issn.1673-3185.2016.01.006

    YAO X L, LIU W T, ZHANG A M, et al. Review of the research on underwater explosion bubbles and the corresponding structural damage [J]. Chinese Journal of Ship Research, 2016, 11(1): 36–45. doi: 10.3969/j.issn.1673-3185.2016.01.006
    [9] QUAH E W, KARRI B, OHL S W, et al. Expansion and collapse of an initially off-centered bubble within a narrow gap and the effect of a free surface [J]. International Journal of Multiphase Flow, 2018, 99: 62–72. doi: 10.1016/j.ijmultiphaseflow.2017.09.013
    [10] CHEN Y Y, YAO X L, CUI X W, et al. Experimental investigation of bubble dynamics near a double-layer plate with a circular hole [J]. Ocean Engineering, 2021, 239: 109715. doi: 10.1016/j.oceaneng.2021.109715
    [11] 陈岩武, 孙远翔, 王成. 水下爆炸载荷下舰船双层底部结构的毁伤特性 [J]. 兵工学报, 2023, 44(3): 670–681. doi: 10.12382/bgxb.2022.0390

    CHEN Y W, SUN Y X, WANG C. Damage characteristics of ship’s double bottom structure subjected to underwater explosion [J]. Acta Armamentarii, 2023, 44(3): 670–681. doi: 10.12382/bgxb.2022.0390
  • 加载中
图(18) / 表(10)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  12
  • PDF下载量:  8
出版历程
  • 收稿日期:  2024-03-20
  • 修回日期:  2024-05-09
  • 网络出版日期:  2024-11-25
  • 刊出日期:  2024-12-05

目录

    /

    返回文章
    返回