不同转角石墨烯/MoS2异质结电子结构与光学性质的第一性原理研究

周潇 宋述鹏 刘慧琪 卢泽

周潇, 宋述鹏, 刘慧琪, 卢泽. 不同转角石墨烯/MoS2异质结电子结构与光学性质的第一性原理研究[J]. 高压物理学报, 2024, 38(5): 052201. doi: 10.11858/gywlxb.20240752
引用本文: 周潇, 宋述鹏, 刘慧琪, 卢泽. 不同转角石墨烯/MoS2异质结电子结构与光学性质的第一性原理研究[J]. 高压物理学报, 2024, 38(5): 052201. doi: 10.11858/gywlxb.20240752
ZHOU Xiao, SONG Shupeng, LIU Huiqi, LU Ze. First Principles Study on the Electronic Structure and Optical Properties of Graphene/MoS2 Heterojunctions with Different Rotation Angles[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 052201. doi: 10.11858/gywlxb.20240752
Citation: ZHOU Xiao, SONG Shupeng, LIU Huiqi, LU Ze. First Principles Study on the Electronic Structure and Optical Properties of Graphene/MoS2 Heterojunctions with Different Rotation Angles[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 052201. doi: 10.11858/gywlxb.20240752

不同转角石墨烯/MoS2异质结电子结构与光学性质的第一性原理研究

doi: 10.11858/gywlxb.20240752
基金项目: 国家自然科学基金(50901053,51771139)
详细信息
    作者简介:

    周 潇(1999-),男,硕士研究生,主要从事高压下二维材料结构与性质研究. E-mail:2424796690@qq.com

    通讯作者:

    宋述鹏(1979-),男,博士,副教授,主要从事高压下凝聚态物质结构与性质研究. E-mail:spsong@wust.edu.cn

  • 中图分类号: O469; O47

First Principles Study on the Electronic Structure and Optical Properties of Graphene/MoS2 Heterojunctions with Different Rotation Angles

  • 摘要: 基于密度泛函理论的第一性原理计算方法,研究了不同扭转角下石墨烯/MoS2异质结构的电子结构和光学特性。结果表明,转角后的石墨烯/MoS2异质结构仍具备作为单层材料时的部分特征。在费米能级附近,石墨烯层保持了其特殊的线性色散能带结构,狄拉克锥上的直接带隙Eg受到层间旋转调制的影响。异质结构中的MoS2层对层厚具有高度的敏感性,随着厚度的增加,其间接带隙持续增大。当转角为10.9°时, Eg的最大值为11.67 meV。差分电荷密度计算结果表明,随着旋转角度的改变,MoS2层中Mo-S间的电子转移引起了Mo―S键长的变化,从而增大了S-S层间距。同时,通过与MoS2结合形成异质结构,石墨烯获得了较高的载流子浓度,异质结界面间旋转使空穴掺杂载流子浓度提高至9.2×1012 cm−2,比未转角时提高约6倍。异质结构的光学性质计算结果表明:当转角为27.0°时,其吸收边发生红移,并向低能区移动了0.233 eV;当转角为10.9°时,其吸收边发生蓝移,并向高能区移动0.116 eV,同时,在可见光范围内,异质结构损失函数下降了0.007。研究结果可为设计新型具有转角特征石墨烯异质结构的光学纳米器件提供理论参考。

     

  • 图  不同转角石墨烯/MoS2异质结结构示意图:(a) 石墨烯/MoS2转角结构示意图,(b) 转角石墨烯/MoS2异质结及原胞布里渊区示意图(紫色代表石墨烯,红色代表MoS2

    Figure  1.  Schematic diagrams of graphene/MoS2 heterojunction structures with different twist angles: (a) graphene/MoS2 twisted structure; (b) twisted graphene/MoS2 heterojunction and Brillouin zone of its primitive cell(where purple represents graphene and red represents MoS2)

    图  6种转角石墨烯/MoS2异质结构

    Figure  2.  Six graphene/MoS2 heterogeneous structures with different twist angles

    图  界面结合能Eb与层间距D的关系曲线

    Figure  3.  Interfacial binding energy Eb as a function of the layer spacing D

    图  不同转角石墨烯/MoS2异质结结构的能带结构与态密度

    Figure  4.  Band structures and density of states of graphene/MoS2 heterojunction structures with different twist angles

    图  (a) 不同角度下狄拉克点处直接带隙的变化,(b) 不同MoS2厚度和转角下石墨烯/MoS2异质结结构的带隙

    Figure  5.  (a) Direct bandgaps at Dirac point for different twist angles; (b) bandgaps for graphene/MoS2 heterojunction structures with different twist angles and thicknesses of MoS2 layer

    图  不同转角下石墨烯/MoS2异质结结构的差分电荷密度(紫色代表电荷增加区域,绿色代表电荷减少区域,等值面ρ=0.002)

    Figure  6.  Difference charge density of graphene/MoS2 heterojunction structures with different twist angles (Purple represents the area of increased charge, while green represents the area of decreased charge, the iso-surface ρ=0.002)

    图  石墨烯/MoS2异质结结构中石墨烯空穴载流子密度模型

    Figure  7.  Models of hole carrier density of graphene in graphene/MoS2 heterojunction structures with different twist angles

    图  不同转角石墨烯/MoS2异质结结构的吸收谱及损失函数

    Figure  8.  Absorption coefficient and loss function of graphene/MoS2 heterojunction structures with different twist angles

    表  1  6种转角石墨烯/MoS2异质结的结构参数

    Table  1.   Structural parameters of six graphene/MoS2 heterojunctions

    θ/(°) Eb/meV D $\sigma$/% θ/(°) Eb/meV D $\sigma$/%
    0 –37.2 3.173 2.90 19.1 –38.6 3.482 2.14
    5.2 –36.6 3.224 4.98 27.0 –36.1 3.218 4.98
    10.9 –38.8 3.468 1.13 41.0 –36.8 3.250 2.14
    下载: 导出CSV
  • [1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666–669. doi: 10.1126/science.1102896
    [2] NETO A H C, GUINEA F, PERES N M R, et al. The electronic properties of graphene [J]. Reviews of Modern Physics, 2009, 81(1): 109–162. doi: 10.1103/RevModPhys.81.109
    [3] 高琦璇, 钟浩源, 周树云. 二维材料的新奇物理及异质结的能带调控 [J]. 物理, 2022, 51(5): 310–318.

    GAO Q X, ZHONG H Y, ZHOU S Y. Novel physics of two-dimensional materials and band structure engineering in van der Waals heterostructures [J]. Physics, 2022, 51(5): 310–318.
    [4] WANG E Y, LU X B, DING S J, et al. Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride [J]. Nature Physics, 2016, 12(12): 1111–1115. doi: 10.1038/nphys3856
    [5] ZHOU S Y, GWEON G H, FEDOROV A V, et al. Substrate-induced bandgap opening in epitaxial graphene [J]. Nature Materials, 2007, 6(10): 770–775. doi: 10.1038/nmat2003
    [6] KIM S, IHM J, CHOI H J, et al. Origin of anomalous electronic structures of epitaxial graphene on silicon carbide [J]. Physical Review Letters, 2008, 100(17): 176802. doi: 10.1103/PhysRevLett.100.176802
    [7] DENG S, LI L J, REES P. Graphene/MoXY heterostructures adjusted by interlayer distance, external electric field, and strain for tunable devices [J]. ACS Applied Nano Materials, 2019, 2(6): 3977–3988. doi: 10.1021/acsanm.9b00871
    [8] CHEN H, ZHAO J F, HUANG J D, et al. Computational understanding of the structural and electronic properties of the GeS-graphene contact [J]. Physical Chemistry Chemical Physics, 2019, 21(14): 7447–7453. doi: 10.1039/C9CP00374F
    [9] PHUC H V, HIEU N N, HOI B D, et al. Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der Waals heterostructure [J]. Physical Chemistry Chemical Physics, 2018, 20(26): 17899–17908. doi: 10.1039/C8CP02190B
    [10] LI L, ZHANG L T, LAN Y, et al. Cooperative effect of strain and electric field on Schottky barriers in van der Waals heterostructure of graphene and hydrogenated phosphorus carbide [J]. Physica E: Low-dimensional Systems and Nanostructures, 2023, 148(19): 115665.
    [11] SINGH S, ESPEJO C, ROMERO A H. Structural, electronic, vibrational, and elastic properties of graphene/MoS2 bilayer heterostructures [J]. Physical Review B, 2018, 98(15): 155309. doi: 10.1103/PhysRevB.98.155309
    [12] DENG S, ZHANG Y, LI L J. Study on electronic and optical properties of the twisted and strained MoS2/PtS2 heterogeneous interface [J]. Applied Surface Science, 2019, 476: 308–316. doi: 10.1016/j.apsusc.2019.01.097
    [13] QIU B, ZHAO X W, HU G C, et al. Optical properties of graphene/MoS2 heterostructure: first principles calculations [J]. Nanomaterials, 2018, 8(11): 962–971. doi: 10.3390/nano8110962
    [14] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717–2744. doi: 10.1088/0953-8984/14/11/301
    [15] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B, 1992, 46(11): 6671–6687. doi: 10.1103/PhysRevB.46.6671
    [16] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [17] NAIMER T, ZOLLNER K, GMITRA M, et al. Twist-angle dependent proximity induced spin-orbit coupling in graphene/transition metal dichalcogenide heterostructures [J]. Physical Review B, 2021, 104(19): 195156. doi: 10.1103/PhysRevB.104.195156
    [18] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J]. Journal of Computational Chemistry, 2006, 27(15): 1787–1799. doi: 10.1002/jcc.20495
    [19] LI L Y, ZHAO M W. Structures, energetics, and electronic properties of multifarious stacking patterns for high-buckled and low-buckled silicene on the MoS2 substrate [J]. The Journal of Physical Chemistry C, 2014, 118(33): 19129–19138. doi: 10.1021/jp5043359
    [20] PIERUCCI D, HENCK H, AVILA J, et al. Band alignment and minigaps in monolayer MoS2-graphene van der Waals heterostructures [J]. Nano Letters, 2016, 16(7): 4054–4061. doi: 10.1021/acs.nanolett.6b00609
    [21] LI Y T, XIAO H P, ZHOU P, et al. Electronic structures of twist-stacked 1T-TaS2 bilayers [J]. Physics Letters A, 2019, 383(19): 2302–2308. doi: 10.1016/j.physleta.2019.04.043
    [22] EBNONNASIR A, NARAYANAN B, KODAMBAKA S, et al. Tunable MoS2 bandgap in MoS2-graphene heterostructures [J]. Applied Physics Letters, 2014, 105(3): 031603. doi: 10.1063/1.4891430
    [23] RISTEIN J, MAMMADOV S, SEYLLER T. Origin of doping in quasi-free-standing graphene on silicon carbide [J]. Physical Review Letters, 2012, 108(24): 246104. doi: 10.1103/PhysRevLett.108.246104
    [24] SAHA S, SINHA T P, MOOKERJEE A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3 [J]. Physical Review B, 2000, 62(13): 8828–8834. doi: 10.1103/PhysRevB.62.8828
    [25] YANG G, GAO S P. A method to restore the intrinsic dielectric functions of 2D materials in periodic calculations [J]. Nanoscale, 2021, 13(40): 17057–17067. doi: 10.1039/D1NR04896A
    [26] YANG G, FAN J C, GAO S P. Momentum and thickness dependent excitonic and plasmonic properties of 2D h-BN and MoS2 restored from supercell calculations [J]. Nanoscale Advances, 2023, 5(24): 6990–6998. doi: 10.1039/D3NA00670K
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  51
  • PDF下载量:  21
出版历程
  • 收稿日期:  2024-03-13
  • 修回日期:  2024-04-13
  • 录用日期:  2024-06-18
  • 网络出版日期:  2024-08-16
  • 刊出日期:  2024-09-29

目录

    /

    返回文章
    返回