动能侵彻弹装药起爆可靠性试验及敏感因素分析

杨慧 王可慧 王伟光 李洋 沈子楷 段建 戴湘晖

杨慧, 王可慧, 王伟光, 李洋, 沈子楷, 段建, 戴湘晖. 动能侵彻弹装药起爆可靠性试验及敏感因素分析[J]. 高压物理学报, 2024, 38(4): 045101. doi: 10.11858/gywlxb.20240729
引用本文: 杨慧, 王可慧, 王伟光, 李洋, 沈子楷, 段建, 戴湘晖. 动能侵彻弹装药起爆可靠性试验及敏感因素分析[J]. 高压物理学报, 2024, 38(4): 045101. doi: 10.11858/gywlxb.20240729
YANG Hui, WANG Kehui, WANG Weiguang, LI Yang, SHEN Zikai, DUAN Jian, DAI Xianghui. Tests and Sensitive Factors Analysis on Detonation Reliability of Charge for Kinetic Energy Penetrator Warhead[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 045101. doi: 10.11858/gywlxb.20240729
Citation: YANG Hui, WANG Kehui, WANG Weiguang, LI Yang, SHEN Zikai, DUAN Jian, DAI Xianghui. Tests and Sensitive Factors Analysis on Detonation Reliability of Charge for Kinetic Energy Penetrator Warhead[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 045101. doi: 10.11858/gywlxb.20240729

动能侵彻弹装药起爆可靠性试验及敏感因素分析

doi: 10.11858/gywlxb.20240729
详细信息
    作者简介:

    杨 慧(1989-),女,博士研究生,工程师,主要从事爆炸力学研究. E-mail:yanghui@nint.ac.cn

    通讯作者:

    王可慧(1975-),女,博士,研究员,主要从事爆炸力学研究. E-mail:wangkehui@nint.ac.cn

  • 中图分类号: O389; TQ560.1

Tests and Sensitive Factors Analysis on Detonation Reliability of Charge for Kinetic Energy Penetrator Warhead

  • 摘要: 为研究弹体结构设计对弹体装药起爆可靠性的影响,设计了一种低成本、便捷式引战静态匹配试验装置,开展了不同条件下引信与装药的传爆裕度试验。基于移动最小二乘法,构建了可表征起爆可靠性的多变量响应函数,定量分析了各敏感因素及其耦合作用对起爆可靠性的影响规律。结果表明:传爆间隙和缓冲层厚度对弹体装药起爆影响较大,而隔板厚度在预设3~5 mm范围内的影响较小;为保证动能侵彻弹在使用环境温度范围内可靠作用,引信相对偏离位置、隔板厚度、传爆间隙以及缓冲层厚度分别不应超过25、3.5、25以及22 mm。该试验装置、分析方法及研究成果可为动能侵彻弹结构设计及可靠性验证提供借鉴和指导。

     

  • 图  动能侵彻弹结构示意图

    Figure  1.  Schematic diagram of the kinetic energy penetrator

    图  侵彻弹传爆序列模型示意图

    Figure  2.  Schematic diagram of detonation transmission model

    图  传爆序列作用原理示意图

    Figure  3.  Schematic diagram of detonation transmission

    图  便捷式引战静态匹配试验装置示意图

    Figure  4.  Schematic diagram of the portable static test device for fuze-warhead coordination

    图  引信与等效弹体传爆可靠性试验的典型照片

    Figure  5.  Typical photos of tests for detonation reliability between the fuze and equivalent penetrator

    图  硬纸壳药柱未正常起爆的试验结果照片

    Figure  6.  Photos of undetonated results of main charge with hard paper shells

    图  钢外壳药柱未正常起爆的试验结果照片

    Figure  7.  Photos of undetonated results of main charge with steel shells

    图  试验结果与重构值的对比

    Figure  8.  Comparison of tested results and reconstructed values

    图  环境温度对起爆可靠性的影响

    Figure  9.  Influence of temperature on detonation reliability

    图  10  弹体结构参数对起爆可靠性的影响

    Figure  10.  Influence of structural parameters on detonation reliability

    表  1  不同条件下传爆裕度试验的测试结果

    Table  1.   Test results of the detonation transfer margin under different conditions

    CaseRelative position
    of fuze/mm
    Thickness of interlayer/mmDistance of gap/mmThickness of inert buffer layer/mmTemperature/℃Result
    Ⅰ -1032020–45Detonation
    Ⅰ -203202022Detonation
    Ⅰ -303302060Detonation
    Ⅰ -4034020–45Unexploded
    Ⅰ -5033020–45Unexploded
    Ⅰ -603302022Unexploded
    Ⅰ -703252022Detonation
    Ⅰ -8032520–45Detonation
    Ⅱ -1303301522Detonation
    Ⅱ -2303401522Detonation
    Ⅱ -33033015–45Detonation
    Ⅱ -43034015–45Detonation
    Ⅱ -5303301560Detonation
    Ⅲ -1305202060Detonation
    Ⅲ -2305202560Unexploded
    Ⅲ -30553060Unexploded
    Ⅲ -4305301560Detonation
    Ⅲ -505030–45Unexploded
    Ⅲ -63052020–45Unexploded
    Ⅲ -73052015–45Detonation
    Ⅳ -1305201522Detonation
    Ⅳ -2305202022Detonation
    下载: 导出CSV
  • [1] 高伟亮, 孙桂娟, 杨建超, 等. 国外钻地武器侵彻试验用弹等效模拟技术研究 [J]. 防护工程, 2022, 44(5): 21–25.

    GAO W L, SUN G J, YANG J C, et al. Research on equivalent simulation technology of a foreign Earth-penetrating weapon trial projectile [J]. Protective Engineering, 2022, 44(5): 21–25.
    [2] 党爱国, 李晓军. 国外钻地武器发展回顾及展望 [J]. 飞航导弹, 2014(6): 35–39.

    DANG A G, LI X J. Review and prospect of the development of foreign Earth-penetrating weapons [J]. Aerodynamic Missile Journal, 2014(6): 35–39.
    [3] 黄亨建, 路中华, 刘晓波, 等. 欧美钝感弹药技术发展现状与趋势 [J]. 含能材料, 2017, 25(8): 618–621. doi: 10.11943/j.issn.1006-9941.2017.08.00X

    HUANG H J, LU Z H, LIU X B, et al. Present situation and development trend of insensitive munition technologies from Europe and America [J]. Chinese Journal of Energetic Materials, 2017, 25(8): 618–621. doi: 10.11943/j.issn.1006-9941.2017.08.00X
    [4] 杨舒棋, 张旭, 彭文杨, 等. 钝感炸药冲击起爆反应过程的PDV技术 [J]. 高压物理学报, 2020, 34(2): 023402. doi: 10.11858/gywlxb.20190856

    YANG S Q, ZHANG X, PENG W Y, et al. PDV technology of shock initiation reaction process of insensitive explosive [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 023402. doi: 10.11858/gywlxb.20190856
    [5] 文雯, 王淑娟, 代晓淦, 等. TATB基PBX及其与HNS复合装药的高速破片撞击安全性 [J]. 含能材料, 2021, 29(5): 399–405. doi: 10.11943/CJEM2020163

    WEN W, WANG S J, DAI X G, et al. High-speed impact safety properties the TATB-based plastic-bonded explosive and its HNS compound charge influence [J]. Chinese Journal of Energetic Materials, 2021, 29(5): 399–405. doi: 10.11943/CJEM2020163
    [6] 黄瑨. CL-20、TATB基复合装药结构的3D打印成型及安全性研究 [D]. 绵阳: 中国工程物理研究院, 2019.

    HUANG J. A kind of CL-20 and TATB-based composite charge structure by 3D printing technology and its safety study [D]. Mianyang: China Academy of Engineering Physics, 2019.
    [7] 张百磊, 常双君, 欧亚鹏. 浇注钝感PBX的研究进展及发展趋势 [J]. 化学推进剂与高分子材料, 2015, 13(1): 42–45, 64.

    ZHANG B L, CHANG S J, OU Y P. Research progress and development trend of casting desensitized PBX [J]. Chemical Propellants & Polymeric Materials, 2015, 13(1): 42–45, 64.
    [8] 李媛媛, 高立龙, 李巍, 等. 抗过载炸药装药侵彻安全性试验研究 [J]. 含能材料, 2010, 18(6): 702–705. doi: 10.3969/j.issn.1006-9941.2010.06.021

    LI Y Y, GAO L L, LI W, et al. Experiment research on security of insensitive explosive charge during penetration [J]. Chinese Journal of Energetic Materials, 2010, 18(6): 702–705. doi: 10.3969/j.issn.1006-9941.2010.06.021
    [9] 马田, 李鹏飞, 周涛, 等. 钻地弹动能侵彻战斗部技术研究综述 [J]. 飞航导弹, 2018(4): 83–86, 92.

    MA T, LI P F, ZHOU T, et al. A review on technology of Earth penetrator warhead [J]. Aerodynamic Missile Journal, 2018(4): 83–86, 92.
    [10] 常龙. 某弹的多功能引信传火及传爆序列结构优化设计 [D]. 沈阳: 沈阳理工大学, 2020.

    CHANG L. Optimization design of multifunctional fuze fire transmission and explosive transmission sequence structure of a projectile [D]. Shenyang: Shenyang Ligong University, 2020.
    [11] 尚雅玲, 彭艳垒, 梁捷. 引信抗大过载技术研究及方案设计 [J]. 舰船电子工程, 2012, 32(6): 121–124. doi: 10.3969/j.issn.1627-9730.2012.06.044

    SHANG Y L, PENG Y L, LIANG J. Research of fuze resisting high g-load technology and scheme design [J]. Ship Electronic Engineering, 2012, 32(6): 121–124. doi: 10.3969/j.issn.1627-9730.2012.06.044
    [12] 李晓峰, 王亚斌, 吴碧. 侵彻弹药引信技术 [M]. 北京: 国防工业出版社, 2016: 31–37.

    LI X F, WANG Y B, WU B. Fuze of penetration ammunition [M]. Beijing: National Defense Industry Press, 2016: 31–37.
    [13] 张波. 空面导弹系统设计 [M]. 北京: 航空工业出版社, 2013: 435–436.

    ZHANG B. Air-to-surface missile system design [M]. Beijing: Aviation Industry Press, 2013: 435–436.
    [14] 陈鹏, 屈可朋, 李亮亮, 等. PBX炸药剪切流动点火性能的实验研究 [J]. 火炸药学报, 2020, 43(1): 69–73, 80.

    CHEN P, QU K P, LI L L, et al. Experimental study on shear-flow ignition performance of PBX explosive [J]. Chinese Journal of Explosives and Propellants, 2020, 43(1): 69–73, 80.
    [15] 崔银锋, 周伟江, 康乐. 引信传爆序列能量匹配性设计与试验 [J]. 水下无人系统学报, 2020, 28(3): 337–344. doi: 10.11993/j.issn.2096-3920.2020.03.015

    CUI Y F, ZHOU W J, KANG L. Design and test of energy matching for detonation train of fuze [J]. Journal of Unmanned Undersea Systems, 2020, 28(3): 337–344. doi: 10.11993/j.issn.2096-3920.2020.03.015
    [16] 肖向东, 肖有才, 蒋海燕, 等. 冲击波作用下引信传爆序列殉爆的数值模拟 [J]. 高压物理学报, 2021, 35(5): 054202. doi: 10.11858/gywlxb.20210706

    XIAO X D, XIAO Y C, JIANG H Y, et al. Numerical simulation and analysis of fuze explosive trains under shock waves [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054202. doi: 10.11858/gywlxb.20210706
    [17] 姚奎光, 王淑娟, 樊星, 等. 不同机械约束下压装PBX炸药反应演化行为 [J]. 兵工学报, 2022, 43(8): 1772–1778. doi: 10.12382/bgxb.2021.0445

    YAO K G, WANG S J, FAN X, et al. Reaction evolution behaviors of pressed plastic-bonded explosive (PBX) under different mechanical confinement conditions [J]. Acta Armamentarii, 2022, 43(8): 1772–1778. doi: 10.12382/bgxb.2021.0445
    [18] 白志玲, 段卓平, 李治, 等. 热刺激约束DNAN基不敏感熔铸炸药装药点火后反应演化调控模型 [J]. 含能材料, 2023, 31(10): 1004–1012. doi: 10.11943/CJEM2023160

    BAI Z L, DUAN Z P, LI Z, et al. Regulation model for reaction evolution of confined DNAN-based cast explosives after ignition under thermal stimulation [J]. Chinese Journal of Energetic Materials, 2023, 31(10): 1004–1012. doi: 10.11943/CJEM2023160
    [19] 楼建锋, 张树道. 不同点火方式下HMX基PBX炸药反应演化过程的特征分析 [J]. 爆炸与冲击, 2024, 44(2): 022301. doi: 10.11883/bzycj-2023-0300

    LOU J F, ZHANG S D. Characteristic analysis of reaction evolution process of HMX-based PBX explosive under different ignition modes [J]. Explosion and Shock Waves, 2024, 44(2): 022301. doi: 10.11883/bzycj-2023-0300
    [20] 张世林, 黎殿来, 黄德雨. 某型深弹引信传爆序列设计与仿真 [J]. 弹箭与制导学报, 2015, 35(3): 58–62.

    ZHANG S L, LI D L, HUANG D Y. Design and simulation on explosive trains in fuze of a certain type of depth charge bombs [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(3): 58–62.
    [21] 梁争峰, 石震, 徐茜萍, 等. 限制性模块化传爆装置可靠性试验 [J]. 火工品, 2012(1): 7–10. doi: 10.3969/j.issn.1003-1480.2012.01.005

    LIANG Z F, SHI Z, XU Q P, et al. Reliability test of confined modular detonation transmission device [J]. Initiators & Pyrotechnics, 2012(1): 7–10. doi: 10.3969/j.issn.1003-1480.2012.01.005
    [22] 高金霞, 赵卫刚, 郑腾. 侵彻战斗部装药抗过载技术研究 [J]. 火工品, 2008(4): 4–7. doi: 10.3969/j.issn.1003-1480.2008.04.002

    GAO J X, ZHAO W G, ZHENG T. Study on the anti-overloading technique for penetrating warhead charge [J]. Initiators & Pyrotechnics, 2008(4): 4–7. doi: 10.3969/j.issn.1003-1480.2008.04.002
    [23] 黄辉, 黄亨建, 王杰, 等. 安全弹药的发展思路与技术途径 [J]. 含能材料, 2023, 31(10): 1079–1087. doi: 10.11943/CJEM2023165

    HUANG H, HUANG H J, WANG J, et al. Development ideas and technical approaches for safety ammunition [J]. Chinese Journal of Energetic Materials, 2023, 31(10): 1079–1087. doi: 10.11943/CJEM2023165
    [24] 彭文杨, 钟斌, 谷岩, 等. 金属隔层和空气间隙对钝感炸药冲击起爆的影响 [J]. 高压物理学报, 2020, 34(3): 033402. doi: 10.11858/gywlxb.20190816

    PENG W Y, ZHONG B, GU Y, et al. Effects of metal interlayer and air gap on the shock initiation of insensitive explosives [J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033402. doi: 10.11858/gywlxb.20190816
    [25] 徐恒威, 梁斌, 刘俊新, 等. 起爆偏心对聚能装药射流成型过程及威力参量的影响 [J]. 高压物理学报, 2023, 37(1): 015102.

    XU H W, LIANG B, LIU J X, et al. Effect of initiation eccentricity on shaped charge jet forming process and power parameters [J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015102.
    [26] 董理赢. 引信传爆序列殉爆反应特性研究 [D]. 太原: 中北大学, 2020.

    DONG L Y. Study on the characteristics of the sympathetic detonation reaction in fuze explosive trains [D]. Taiyuan: North University of China, 2020.
    [27] 田秀琦. 不同环境温度下JO-9C传爆药冲击起爆特性研究 [D]. 太原: 中北大学, 2020.

    TIAN X Q. Study on shock initiation characteristics of JO-9C booster at different ambient temperatures [D]. Taiyuan: North University of China, 2020.
    [28] 金丽, 杨振英, 张玉若, 等. 一种直列式传爆序列的装药传爆性能试验研究 [J]. 含能材料, 2012, 20(1): 105–108. doi: 10.3969/j.issn.1006-9941.2012.01.025

    JIN L, YANG Z Y, ZHANG Y R, et al. Performance of an in-line explosive trains [J]. Chinese Journal of Energetic Materials, 2012, 20(1): 105–108. doi: 10.3969/j.issn.1006-9941.2012.01.025
    [29] 梁斌, 石啸海, 余春祥, 等. 装药驱动飞片引爆炸药性能影响参数分析 [J]. 应用数学和力学, 2019, 40(8): 893–909.

    LIANG B, SHI X H, YU C X, et al. Analysis of effects on shock initiation performances for booster charge structure parameters [J]. Applied Mathematics and Mechanics, 2019, 40(8): 893–909.
    [30] 欧阳昌明, 段卓平, 孙宝平, 等. 冲击波和破片复合作用下装药起爆实验研究 [J]. 爆炸与冲击, 2013, 33(Suppl 1): 63–66.

    OUYANG C M, DUAN Z P, SUN B P, et al. Experimental study on initiation of charge under combined shock wave and fragment impact [J]. Explosion and Shock Waves, 2013, 33(Suppl 1): 63–66.
    [31] COCHRAN K R, FAN L, DEVOE D L. Moving reflector type micro optical switch for high-power transfer in a MEMS-based safety and arming system [J]. Journal of Micromechanics and Microengineering, 2004, 14(1): 138–146. doi: 10.1088/0960-1317/14/1/019
    [32] 刘卫, 褚恩义, 刘兰, 等. 基于飞片冲击起爆原理的微起爆序列技术研究进展 [J]. 含能材料, 2023, 31(6): 606–634. doi: 10.11943/CJEM2023043

    LIU W, CHU E Y, LIU L, et al. Review on micro fire-train based on flyer impact initiation [J]. Chinese Journal of Energetic Materials, 2023, 31(6): 606–634. doi: 10.11943/CJEM2023043
    [33] LANCASTER P, SALKAUSKAS K. Surfaces generated by moving least squares methods [J]. Mathematics of Computation, 1981, 37(155): 141–158. doi: 10.1090/S0025-5718-1981-0616367-1
    [34] QI W C, QIU Z P. A collocation interval analysis method for interval structural parameters and stochastic excitation [J]. Science China Physics, Mechanics and Astronomy, 2012, 55(1): 66–77. doi: 10.1007/s11433-011-4570-z
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  36
  • PDF下载量:  28
出版历程
  • 收稿日期:  2024-02-26
  • 修回日期:  2024-03-15
  • 录用日期:  2024-05-20
  • 网络出版日期:  2024-07-16
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回