三轴压缩下裂隙岩体破坏模式及能量演化研究

徐阳 周宗红 杨渊 梁源贵 李绍斌

徐阳, 周宗红, 杨渊, 梁源贵, 李绍斌. 三轴压缩下裂隙岩体破坏模式及能量演化研究[J]. 高压物理学报, 2024, 38(5): 054203. doi: 10.11858/gywlxb.20240722
引用本文: 徐阳, 周宗红, 杨渊, 梁源贵, 李绍斌. 三轴压缩下裂隙岩体破坏模式及能量演化研究[J]. 高压物理学报, 2024, 38(5): 054203. doi: 10.11858/gywlxb.20240722
XU Yang, ZHOU Zonghong, YANG Yuan, LIANG Yuangui, LI Shaobin. Study on Failure Mode and Energy Evolution of Fractured Rock Body under Triaxial Compression[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054203. doi: 10.11858/gywlxb.20240722
Citation: XU Yang, ZHOU Zonghong, YANG Yuan, LIANG Yuangui, LI Shaobin. Study on Failure Mode and Energy Evolution of Fractured Rock Body under Triaxial Compression[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054203. doi: 10.11858/gywlxb.20240722

三轴压缩下裂隙岩体破坏模式及能量演化研究

doi: 10.11858/gywlxb.20240722
基金项目: 国家自然科学基金(52264019)
详细信息
    作者简介:

    徐 阳(1997-),男,硕士研究生,主要从事矿山安全与岩石力学研究. E-mail:351675412@qq.com

    通讯作者:

    周宗红(1967-),男,博士,教授,主要从事采矿工程与岩石力学研究. E-mail:zhou20051001@163.com

  • 中图分类号: O346.1; O521.9; TU45

Study on Failure Mode and Energy Evolution of Fractured Rock Body under Triaxial Compression

  • 摘要: 为研究不同围压条件下含不同长度单裂隙岩体的裂纹扩展特征和能量演化规律,基于室内三轴压缩试验结果标定细观参数,开展了PFC2D颗粒流数值模拟试验。结果表明:拉伸裂纹先于剪切裂纹产生,两者呈指数增长,裂隙长度减小和围压增大使拉伸裂纹和剪切裂纹快速增长时间滞后;最终破坏时,随裂隙长度增加,拉伸裂纹和剪切裂纹减少。应力集中于裂隙两端,裂纹周围存在应力集中现象。相同围压下,裂隙长度增加,岩样破坏时块体数减少。岩体破坏本质为能量储存、耗散与释放的过程,在加载过程中,岩体能量转化被分为4个阶段。裂隙长度增加削弱岩样储存应变能的能力,总能量减少,围压增强岩样储存应变能的能力。岩样破坏时,耗散能大于应变能,随裂隙增长,耗散能减少。

     

  • 图  裂隙岩样模型

    Figure  1.  Model of fissure rock sample

    图  室内试验[16]与PFC2D数值模拟结果对比

    Figure  2.  Comparison between indoor test[16] and PFC2D numerical simulation

    图  平行黏结破坏模式

    Figure  3.  Parallel bonding damage pattern

    图  不同围压和裂隙长度下岩样总裂纹的演化规律

    Figure  4.  Total cracks evolution of rock samples under different confining pressures and fissure lengths

    图  不同围压和裂隙长度下岩样剪切裂纹的演化规律

    Figure  6.  Shear cracks evolution of rock samples under different confining pressures and fissure lengths

    图  不同围压和裂隙长度下岩样拉伸裂纹的演化规律

    Figure  5.  Tensile cracks evolution of rock samples under different confining pressures and fissure lengths

    图  不同围压和裂缝长度下岩石试样失效后的裂纹数

    Figure  7.  Cracks number in rock specimens after failure under different confining pressures and fissure lengths

    图  不同围压下岩体最终破坏块体数

    Figure  8.  Final number of failure blocks of rock mass under different confining pressures

    图  不同围压下裂隙长度为2.5 mm的岩样块体的破碎形态

    Figure  9.  Crushing pattern of rock sample block with a fissure length of 2.5 mm under different confining pressures

    图  10  不同围压下裂隙长度为5 mm的岩样块体的破碎形态

    Figure  10.  Crushing pattern of rock sample block with a fissure length of 5 mm under different confining pressures

    图  11  不同围压下裂隙长度为10 mm的岩样块体的破碎形态

    Figure  11.  Crushing pattern of rock sample block with a fissure length of 10 mm under different confining pressures

    图  12  不同围压下裂隙长度为15 mm的岩样块体的破碎形态

    Figure  12.  Crushing pattern of rock sample block with a fissure length of 15 mm under different confining pressures

    图  13  岩样弹性应变能与耗散能的关系

    Figure  13.  Relationship between elastic strain energy and dissipation energy of rock samples

    图  14  10.0 MPa围压下不同岩样的能量转化曲线

    Figure  14.  Energy conversion curves of different rock samples under 10.0 MPa confining pressure

    图  15  裂隙岩样的储能极限

    Figure  15.  Energy storage limit of fissure rock samples

    图  16  峰值与峰后能量指标的对比

    Figure  16.  Comparison of the peak and post-peak energy metrics

    表  1  岩石PFC模型细观参数

    Table  1.   Mesoscopic parameters of the rock PFC model

    Minimum radius of particles/mm Ratio of maximum to minimum of radius Density of the particle/
    (kg·m−3)
    Friction coefficient Bond friction angle/(º)
    0.3 1.5 2 950 0.17 40
    Parallel bonding stiffness ratio Particle stiffness ratio Effective modulus of bonding/GPa Tangential bond strength/MPa Normal bond strength/MPa
    1.1 1.1 11 76.6 69.6
    下载: 导出CSV

    表  2  室内试验[16]与数值模拟对比

    Table  2.   Comparison between indoor test[16] and numerical simulation results

    Method Deviatoric stress/MPa Elastic modulus/MPa
    Indoor test[16] 144.782 17.147
    Numerical simulation 144.670 17.109
    Error/% 0.077 0.222
    下载: 导出CSV

    表  3  不同裂隙长度的岩样在不同围压下的接触力链演化过程

    Table  3.   Evolution of contact force chain of rock samples under different confining pressures and fissure lengths

    L/mm Confining pressure/MPa Pre-peak period Peak value Post-peak period
    05.0
    10.0
    55.0
    10.0
    105.0
    10.0
    下载: 导出CSV

    表  4  不同裂隙长度岩样的峰值点能量指标

    Table  4.   Indexes of peak point energy of rock samples with different fissure lengths

    L/mm Confining pressure/MPa Total energy/kJ Dissipated energy
    Energy/kJ Proportion/%
    0 2.5 288.67 9.54 3.30
    5.0 324.79 10.41 3.21
    10.0 415.48 14.47 3.48
    15.0 474.29 21.31 4.49
    5 2.5 248.58 8.24 3.31
    5.0 281.97 9.11 3.23
    10.0 348.54 12.51 3.59
    15.0 355.56 12.34 3.47
    10 2.5 172.37 4.89 2.84
    5.0 205.55 7.32 3.56
    10.0 279.90 9.16 3.27
    15.0 293.19 10.24 3.49
    15 2.5 153.98 5.86 3.8
    5.0 169.91 5.02 2.95
    10.0 215.02 7.95 3.70
    15.0 240.84 10.34 4.29
    下载: 导出CSV
  • [1] 李泓颖, 刘晓辉, 郑钰, 等. 深埋锦屏大理岩渐进破坏过程中的特征能量分析 [J]. 岩石力学与工程学报, 2022, 41(Suppl 2): 3229–3239.

    LI H Y, LIU X H, ZHENG Y, et al. Analysis of characteristic energy during the progressive failure of deep-buried marble in Jinping [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Suppl 2): 3229–3239.
    [2] 刘鹏飞, 范俊奇, 郭佳奇, 等. 三轴应力下花岗岩加载破坏的能量演化和损伤特征 [J]. 高压物理学报, 2021, 35(2): 024102. doi: 10.11858/gywlxb.20200622

    LIU P F, FAN J Q, GUO J Q, et al. Damage and energy evolution characteristics of granite under triaxial stress [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024102. doi: 10.11858/gywlxb.20200622
    [3] LI E B, GAO L, JIANG X Q, et al. Analysis of dynamic compression property and energy dissipation of salt rock under three-dimensional pressure [J]. Environmental Earth Sciences, 2019, 78(14): 388. doi: 10.1007/s12665-019-8389-7
    [4] DU X H, XUE J H, SHI Y, et al. Triaxial mechanical behaviour and energy conversion characteristics of deep coal bodies under confining pressure [J]. Energy, 2023, 266: 126443. doi: 10.1016/j.energy.2022.126443
    [5] 刘之喜, 孟祥瑞, 赵光明, 等. 真三轴压缩下砂岩的能量和损伤分析 [J]. 岩石力学与工程学报, 2023, 42(2): 327–341.

    LIU Z X, MENG X R, ZHAO G M, et al. Energy and damage analysis of sandstone under true triaxial compression [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 327–341.
    [6] ZHANG Y, FENG X T, ZHANG X W, et al. Strain energy evolution characteristics and mechanisms of hard rocks under true triaxial compression [J]. Engineering Geology, 2019, 260: 105222. doi: 10.1016/j.enggeo.2019.105222
    [7] 王星辰, 王志亮, 黄佑鹏, 等. 预制裂隙岩样宏细观力学行为颗粒流数值模拟 [J]. 水文地质工程地质, 2021, 48(4): 86–92.

    WANG X C, WANG Z L, HUANG Y P, et al. Particle flow simulation of macro- and meso-mechanical behavior of the prefabricated fractured rock sample [J]. Hydrogeology & Engineering Geology, 2021, 48(4): 86–92.
    [8] 方前程, 周科平, 刘学服. 不同围压下断续节理岩体破坏机制的颗粒流分析 [J]. 中南大学学报(自然科学版), 2014, 45(10): 3536–3543.

    FANG Q C, ZHOU K P, LIU X F. Failure mechanism of discontinuous joint rock mass under different confining pressures based on particle flow code [J]. Journal of Central South University (Science and Technology), 2014, 45(10): 3536–3543.
    [9] 黄明智, 李新平, 王刚, 等. 三轴压缩条件下单裂隙花岗岩破坏特性研究 [J]. 地下空间与工程学报, 2022, 18(4): 1208–1218.

    HUANG M Z, LI X P, WANG G, et al. Study on the failure characteristics of single-fissured granite under triaxial compression condition [J]. Chinese Journal of Underground Space and Engineering, 2022, 18(4): 1208–1218.
    [10] SONG L B, WANG G, WANG X K, et al. The influence of joint inclination and opening width on fracture characteristics of granite under triaxial compression [J]. International Journal of Geomechanics, 2022, 22(5): 04022031. doi: 10.1061/(ASCE)GM.1943-5622.0002372
    [11] 陈鹏宇, 孔莹, 余宏明. 岩石单轴压缩PFC2D模型细观参数标定研究 [J]. 地下空间与工程学报, 2018, 14(5): 1240–1249.

    CHEN P Y, KONG Y, YU H M. Research on the calibration method of microparameters of a uniaxial compression PFC2D model for rock [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1240–1249.
    [12] 张亮, 王桂林, 雷瑞德, 等. 单轴压缩下不同长度单裂隙岩体能量损伤演化机制 [J]. 中国公路学报, 2021, 34(1): 24–34. doi: 10.3969/j.issn.1001-7372.2021.01.003

    ZHANG L, WANG G L, LEI R D, et al. Energy damage evolution mechanism of single jointed rock mass with different lengths under uniaxial compression [J]. China Journal of Highway and Transport, 2021, 34(1): 24–34. doi: 10.3969/j.issn.1001-7372.2021.01.003
    [13] 周杰, 汪永雄, 周元辅. 基于颗粒流的砂岩三轴破裂演化宏-细观机理 [J]. 煤炭学报, 2017, 42(Suppl 1): 76–82.

    ZHOU J, WANG Y X, ZHOU Y F. Macro-micro evolution mechanism on sandstone failure in triaxial compression test based on PFC2D [J]. Journal of China Coal Society, 2017, 42(Suppl 1): 76–82.
    [14] 龙恩林, 陈俊智. 花岗岩颗粒流模型循环压缩作用下能量特征分析 [J]. 中国安全生产科学技术, 2019, 15(10): 95–100. doi: 10.11731/j.issn.1673-193x.2019.10.015

    LONG E L, CHEN J Z. Analysis on energy characteristics of granite particle flow model under cyclic compression [J]. Journal of Safety Science and Technology, 2019, 15(10): 95–100. doi: 10.11731/j.issn.1673-193x.2019.10.015
    [15] 李晓锋, 李海波, 夏祥, 等. 类节理岩石直剪试验力学特性的数值模拟研究 [J]. 岩土力学, 2016, 37(2): 583–591.

    LI X F, LI H B, XIA X, et al. Numerical simulation of mechanical characteristics of jointed rock in direct shear test [J]. Rock and Soil Mechanics, 2016, 37(2): 583–591.
    [16] 刘剑. 闪长岩加卸荷失稳破裂前兆信息研究 [D]. 昆明: 昆明理工大学, 2022.

    LIU J. Study on the precursor information of diorite plus unloading instability rupture [D]. Kunming: Kunming University of Science and Technology, 2022.
    [17] CHEN Z Q, HE C, MA G Y, et al. Energy damage evolution mechanism of rock and its application to brittleness evaluation [J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 1265–1274. doi: 10.1007/s00603-018-1681-0
    [18] WANG Q S, CHEN J X, GUO J Q, et al. Acoustic emission characteristics and energy mechanism in karst limestone failure under uniaxial and triaxial compression [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(3): 1427–1442. doi: 10.1007/s10064-017-1189-y
    [19] YANG S Q, LIU X R, JING H W. Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 63: 82–92. doi: 10.1016/j.ijrmms.2013.06.008
    [20] ZHANG X P, JIANG Y J, WANG G, et al. Mechanism of shear deformation, failure and energy dissipation of artificial rock joint in terms of physical and numerical consideration [J]. Geosciences Journal, 2019, 23(3): 519–529. doi: 10.1007/s12303-018-0043-y
    [21] FENG Q, JIN J C, ZHANG S, et al. Study on a damage model and uniaxial compression simulation method of frozen-thawed rock [J]. Rock Mechanics and Rock Engineering, 2022, 55(1): 187–211. doi: 10.1007/s00603-021-02645-2
    [22] 张志镇, 高峰. 受载岩石能量演化的围压效应研究 [J]. 岩石力学与工程学报, 2015, 34(1): 1–11.

    ZHANG Z Z, GAO F. Confining pressure effect on rock energy [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 1–11.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  49
  • PDF下载量:  25
出版历程
  • 收稿日期:  2024-01-31
  • 修回日期:  2024-03-21
  • 录用日期:  2024-05-27
  • 网络出版日期:  2024-07-22
  • 刊出日期:  2024-09-29

目录

    /

    返回文章
    返回