三轴压缩下裂隙岩体破坏模式及能量演化研究

徐阳 周宗红 杨渊 梁源贵 李绍斌

徐阳, 周宗红, 杨渊, 梁源贵, 李绍斌. 三轴压缩下裂隙岩体破坏模式及能量演化研究[J]. 高压物理学报, 2024, 38(5): 054203. doi: 10.11858/gywlxb.20240722
引用本文: 徐阳, 周宗红, 杨渊, 梁源贵, 李绍斌. 三轴压缩下裂隙岩体破坏模式及能量演化研究[J]. 高压物理学报, 2024, 38(5): 054203. doi: 10.11858/gywlxb.20240722
XU Yang, ZHOU Zonghong, YANG Yuan, LIANG Yuangui, LI Shaobin. Study on Failure Mode and Energy Evolution of Fractured Rock Body under Triaxial Compression[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054203. doi: 10.11858/gywlxb.20240722
Citation: XU Yang, ZHOU Zonghong, YANG Yuan, LIANG Yuangui, LI Shaobin. Study on Failure Mode and Energy Evolution of Fractured Rock Body under Triaxial Compression[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054203. doi: 10.11858/gywlxb.20240722

三轴压缩下裂隙岩体破坏模式及能量演化研究

doi: 10.11858/gywlxb.20240722
基金项目: 国家自然科学基金(52264019)
详细信息
    作者简介:

    徐 阳(1997-),男,硕士研究生,主要从事矿山安全与岩石力学研究. E-mail:351675412@qq.com

    通讯作者:

    周宗红(1967-),男,博士,教授,主要从事采矿工程与岩石力学研究. E-mail:zhou20051001@163.com

  • 中图分类号: O346.1; O521.9; TU45

Study on Failure Mode and Energy Evolution of Fractured Rock Body under Triaxial Compression

  • 摘要: 为研究不同围压条件下含不同长度单裂隙岩体的裂纹扩展特征和能量演化规律,基于室内三轴压缩试验结果标定细观参数,开展了PFC2D颗粒流数值模拟试验。结果表明:拉伸裂纹先于剪切裂纹产生,两者呈指数增长,裂隙长度减小和围压增大使拉伸裂纹和剪切裂纹快速增长时间滞后;最终破坏时,随裂隙长度增加,拉伸裂纹和剪切裂纹减少。应力集中于裂隙两端,裂纹周围存在应力集中现象。相同围压下,裂隙长度增加,岩样破坏时块体数减少。岩体破坏本质为能量储存、耗散与释放的过程,在加载过程中,岩体能量转化被分为4个阶段。裂隙长度增加削弱岩样储存应变能的能力,总能量减少,围压增强岩样储存应变能的能力。岩样破坏时,耗散能大于应变能,随裂隙增长,耗散能减少。

     

  • 冲击波加载多孔固体介质过程中形成的极端高温高压条件可激活常规温压条件难以发生的化学反应,为材料合成开辟了一条新途径,尤其是对合成条件苛刻的材料具有显著优势。然而,冲击波作用导致粉末从初始状态至孔隙湮灭的过程中涉及多种机械、物理和化学变化,因而冲击波压缩下的反应过程十分复杂[1]。冲击诱导化学反应取决于外部加载条件和粉末混合物的初始状态等多种因素[2-3],反应物粉末的初始孔隙率是控制冲击反应热力学和动力学的一个非常重要因素[4]。Cooper 等[5]应用理论模拟证实,冲击波和孔隙表面相互作用导致孔隙崩塌产生的大量能量集聚有利于激活化学反应,因此探讨粉末初始孔隙率对诱发超快冲击化学反应的影响极为重要。

    铌硅二元金属间化合物因具有低密度和优良的高温强度等物理特性,可作为潜在的高温结构材料和金属含能材料[6-7]。根据铌-硅二元相图,铌-硅系存在Nb5Si3、Nb3Si和 NbSi2共3种金属间化合物[8]。其中Nb5Si3的熔点(2 515 ℃)最高,密度 (7.16 g/cm3)相对较低,因其具有优良的高温性能受到关注[9]。这类材料的熔点高、晶体结构复杂,采用常规方法难以合成,但该类材料的合成反应能够放热,理论上讲,一旦被激活便可自维持发生反应。由于该激活势垒高,传统方法难以达到激活条件,而冲击波加载产生的极端高温高压对于激活该类反应具有一定优势。目前,已经开展了铌硅化合物的冲击合成工作。Vecchio等[10]应用冲击波加载合成了NbSi2,发现其冲击诱导反应机制与传统固态反应机制不同;Meyers等[11]也通过铌硅粉末混合物的冲击回收,发现塑性变形可以影响铌硅粉末间的反应。此外,还有一些理论模拟研究对铌硅金属间化合物的冲击合成进行探讨[12]。但是,所有铌硅粉末混合物的冲击反应研究,无论是实验结果还是理论分析都仅局限于较低冲击强度条件(飞片速度在2.0 km/s以下),冲击产物也仅获得了较低熔点的NbSi2,而且这些结果对于冲击化学反应的程度和机理解释存在分歧。而且,高熔点金属间化合物(如Nb5Si3)这类传统方法较难合成的材料在高冲击强度范围(飞片速度在2.0 km/s以上)的冲击合成及反应机制未有报道。

    课题组前期开展了铌硅粉末混合物的冲击回收实验,通过高冲击强度下的冲击回收获得了高熔点Nb5Si3化合物[13],发现相同组分配比的铌硅粉末混合物在不同的冲击强度下合成了不同组成的铌硅化合物,且反应特征不同。为更清楚地理解高冲击强度下铌硅粉末混合物的冲击合成及反应机制,在前期工作基础上,本研究进一步对不同孔隙率的铌硅粉末混合物样品进行高冲击强度下回收,通过对冲击回收产物进行表征分析,探讨不同初始孔隙率对铌硅混合物冲击反应的影响。

    实验使用高纯Nb(约325目,Alfa Aesar公司)和Si(约325目,Alfa Aesar公司)粉末原料。将铌粉和硅粉按原子比为5∶3称量,V型混料器中氩气气氛下将粉末混合2 h,通过不同压力将混合好的粉末冷压成直径约为12 mm、厚度约为3 mm的圆片状试样。冲击样品的准备过程(原料称量、混合前的真空封装、压片和铜回收盒的真空封装)均在水氧监测氩气气氛保护的手套箱中完成。将装有样品的铜制回收盒密封。样品孔隙率的计算方法参考文献[14]。

    应用二级轻气炮加载装置对样片进行冲击回收,装置示意图和实物如图1所示。将铜飞片(24 mm × 3.0 mm)粘在发射弹丸上,由磁测速系统测量飞片速度,在飞片速度约2.35 km/s的最高冲击速度下进行冲击回收实验。利用质量平均法计算混合物样品的雨贡纽参数[15-16],采用阻抗匹配法和疏松粉末状态方程计算样品的冲击压力和温度[15,17]表1列出了不同孔隙率粉末混合物的冲击回收实验参数和计算结果。

    图  1  冲击回收实验装置示意图和实物
    Figure  1.  Schematic and photographs of the assembly for the shock recovery experiment
    表  1  不同孔隙度的粉末混合物的冲击回收实验参数
    Table  1.  Shock loading conditions of Nb-Si powder mixtures with different porosity
    SampleFlyer velocity/
    (km·s−1)
    Density/
    (g·cm−3)
    Porosity/
    %
    Shock
    pressure/GPa
    Second shock
    pressure/GPa
    Shock
    temperature/K
    Nb-Si-P15.5051045601 173
    Nb-Si-P22.35 ± 0.024.8952039601 625
    Nb-Si-P33.9803529602 256
    下载: 导出CSV 
    | 显示表格

    图2显示了完整回收的铜回收盒在冲击前、后的外形变化。用机械切割方式从铜制回收盒中将回收的冲击产物分离取出,切掉产物样品外围边缘的含铜部分,留下中心主体部分用于表征分析。将产物样块逐级打磨,并清洗、干燥,储存在真空干燥箱中待表征。

    图  2  冲击回收前、后铜回收盒
    Figure  2.  Copper capsule before and after shock loading

    使用X 射线衍射仪(丹东浩元仪器有限公司,DX-2700型)对样品进行物相表征,采用CuKa 靶(λ = 0.154 06 nm) 射线,衍射角2θ为20°~80°,步长为0.03°,每步计数时间1 s。使用日本电子公司JSM-7001F型场发射扫描电子显微镜 (SEM)进行微观形貌观察,并用SEM配备的能谱仪分析各物相的成分。使用差示扫描量热计(DSC)测量冲击回收产物的热响应曲线(Ar气氛下,加热速率为10 ℃/min)。

    图3为不同孔隙率铌硅粉末冲击产物的XRD图谱。从图3(a)中10%孔隙率冲击样品的XRD结果可见,产物主要为Nb和Si的特征衍射峰及较弱的NbSi2衍射峰,表明仍有大部分Nb和Si未发生反应,仅有极少部分NbSi2相生成。由图3(b)中20%孔隙率铌硅粉末冲击产物的XRD结果可见,该孔隙率产物中虽仍有部分未反应的Nb和Si,但生成NbSi2相的程度有所提高,初始孔隙率提高后,冲击化学反应更易进行。此外,图3(c)中35%孔隙率铌硅粉末混合物的冲击产物XRD图谱显示,其衍射峰仅由Nb5Si3(包括α-Nb5Si3相和β-Nb5Si3相)的特征峰组成。与低孔隙率样品相比,在相同冲击强度下高孔隙率粉末样品更容易获得高熔点Nb5Si3金属间化合物。因此,初始孔隙率对粉末混合物在冲击压缩下物相生成、固相化学反应的影响非常明显。参考表1估算的冲击平均温度也可看出,随着样品初始孔隙率增加,较高的冲击温度(2 256 K)更有利于铌硅金属间化合物发生反应。

    图  3  不同孔隙率铌硅粉末冲击回收产物的XRD 结果
    Figure  3.  XRD patterns of the recycled samples of Nb-Si powder mixtures with different porosity

    图4为10%初始孔隙率铌硅粉末冲击产物的SEM结果,其中图4(b)图4(a)的局部放大图,图4(c)为样品EDS能谱分析结果,w为质量分数。由图4(a)可以看出,样品在该冲击压力(约为45 GPa)下铌硅颗粒被明显压实,没有明显物相生成或发生化学反应。图4(b)中局部区域放大图显示,与初态未冲击样品相比,冲击后的粉末颗粒呈细粒化、等轴状,说明冲击加载作用导致颗粒发生崩裂和相互嵌合。EDS能谱显示图4(b)中亮灰色细粒子的为Nb,周围相对较暗细粒为Si,可能由于NbSi2量极少,在图中未能明确分辨。在较小孔隙率即相对密实的混合反应物样品中,冲击波更多作用于粉末颗粒的机械和物理变形。由于孔隙率低,孔隙崩塌所致的能量贮集弱,极少能够激活并促发冲击化学反应。

    图  4  10%孔隙率铌硅粉末冲击回收产物的SEM结果和EDS分析
    Figure  4.  SEM morphology and EDS spectra of the recycled samples of Nb-Si powder mixtures with the porosity of 10%

    图5为20%初始孔隙率铌硅粉末冲击回收产物的SEM结果,其中图5(b)为图5(a)的局部放大图,图5(c)为样品EDS能谱分析结果。图5(a)中,经冲击加载后20%孔隙率回收产物与10%孔隙率回收产物明显不同,随着冲击作用下温度不断升高,由于Si的熔点较低,而Nb的屈服强度和熔点较高,Si会发生熔融,并分布于变形的Nb周围,与基体特征类似,并且其中弥散着新相。如图5(b)所示,对富Si区域高倍放大观察可见,Si基体中分布着球形、结节状粒子,表现出发生反应的微观特征。对图5(b)方框内粒子进行EDS元素分析发现,其化学组成与NbSi2化学式的原子个数比相符,与XRD结果中出现NbSi2衍射峰一致。由此可见,与10%孔隙率样品相比,在相同飞片速度冲击下,随着冲击温度升高,高初始孔隙率反应产物中的铌硅颗粒发生严重变形并伴随硅发生熔融,并且NbSi2产物增多,表明发生了明显的冲击化学反应。

    图  5  20%孔隙率铌硅粉末冲击回收产物的SEM结果和EDS分析
    Figure  5.  SEM morphology and EDS spectra of the recycled samples of Nb-Si powder mixtures with the porosity of 20%

    图6为高孔隙率(35%)铌硅粉末混合物冲击回收样品的SEM结果。由图6(a)可知,样品已转化为相对均匀的单一微观组织结构,表明该孔隙率样品在相同冲击速度下已发生完全反应形成新的相结构。图6(b)图6(a)中方框内区域局部放大图,图中的新相为枝条状结构,其间有微纳孔(孔隙率约为4.7%,孔隙尺寸介于0.2~4 μm之间)。EDS能谱分析结果显示,铌和硅的原子比约为63.02:36.98,与Nb5Si3化学式的原子个数比接近,表明冲击反应生成物为Nb5Si3化合物。35%孔隙率样品中,冲击加载创造了极高的温度条件(估算冲击样品中的平均温度达2 256 K),相同冲击速度作用于铌硅粉末在物相生成和反应程度上与前述低孔隙率样品相比显著提高,并且其物相形态有明显不同。

    图  6  35%孔隙率铌硅粉末冲击回收产物的SEM结果和EDS分析
    Figure  6.  SEM morphology and EDS spectra of the recycled samples of Nb-Si powder mixtures with the porosity of 35%

    值得注意的是,高孔隙率样品在飞片速度约为2.35 km/s时就发生了完全反应,而前期对不同冲击速度下反应行为的研究发现,较低孔隙率(20%)样品[13]需要更高的冲击速度(飞片速度约为2.63 km/s)才能发生完全反应。因此,高孔隙率样品崩塌所致的高能量贮集产生的高温是发生完全反应的重要条件。

    图7为不同孔隙率铌硅粉末冲击产物的DSC曲线。由图7可知,孔隙率为10%和20%冲击产物的DSC曲线分别在720 ℃和810 ℃附近出现了两个放热峰。结合冲击产物的XRD结果分析可知,720 ℃放热峰可能是冲击产物中未反应的Nb和Si之间进一步发生反应放热所致。可能因为未发生完全化学反应的冲击产物中,未反应的铌和硅粒子在比自蔓延燃烧反应开始温度低约200 ℃时就开始发生化学反应[18]。该异常是由于冲击作用引起粒子粉末发生塑性流动和混合,表面清洁以及样品自身缺陷导致在冲击压缩加载期间粒子粉末被活化。而810 ℃放热峰可能是由于冲击塑变的Nb颗粒发生再结晶。35%孔隙度冲击回收产物的DSC结果呈现光滑的曲线,在测试加热范围内未出现放热峰,表明冲击回收产物为稳定的化合物。这与前述的物相表征和形貌分析结果一致,也证实了35%孔隙度样品完全反应生成了Nb5Si3金属间化合物。

    图  7  不同孔隙率铌硅粉末冲击回收产物的DSC曲线
    Figure  7.  DSC curves of the shock recycled samples of Nb-Si powder mixtures with different porosity

    粉末颗粒混合物的初始状态涵盖颗粒自身组成结构及混合颗粒间的相互接触等条件[19-22]。冲击加载时,在冲击波的高压作用下,样品颗粒的变化不是孤立发生的,而受相互间直接作用和颗粒自身物理性质的限制,表现为样品内颗粒的整体协调变形及交互作用。这些作用对于颗粒的变形方式、变形程度和融合都会产生直接影响。更重要的是,不同变化方式和程度会导致不同的能量集聚,从而产生温度升高和局域热效应[23],这些变化又反过来影响物质的扩散、相互渗透甚至激活化学反应。研究表明[24-25],合适的孔隙率对于粉末颗粒反应物的冲击化学合成非常重要。

    由表征分析结果可知,孔隙率对于铌硅粉末混合物冲击反应的影响,是导致其反应发生及反应机制变化的重要因素。20%孔隙率冲击反应伴随着铌硅颗粒间强烈的相互作用、较低的相互约束以及大面积的孔隙塌陷或湮灭,冲击加热效果显著提升,不仅导致硅粒子发生熔化,变形的铌粒子嵌入到熔融的硅中,而且以铌粒子所在位置为形核中心,铌与周围的硅粒子发生半“固-液”化学反应生成相应的铌硅化合物,不过该激活程度仍处于仅能激发NbSi2反应物生成的条件。在更高孔隙率(35%)下,铌硅颗粒交互作用、变形及孔隙塌陷引起的能量集聚很高,使得样品内部急剧升温,引发高熔点的铌熔化,熔融的铌硅原子发生自由迁移,在极高温度激活下,铌硅间发生“液相”化学反应获得相应的铌硅化合物,即全面激活了铌硅间的自维持反应,并获得高熔点的Nb5Si3金属间化合物且反应完全。值得注意的是,过大孔隙率会在样品中留下微纳尺度孔隙,可能会对样品的块体性能产生影响。此外,实验研究发现,若孔隙率过高,孔隙崩塌产生的过高温度可能使冲击回收样品盒局部熔化,出现破漏或样品内气体相较多导致回收盒爆裂,从而导致冲击回收样品失败。

    通过3种不同初始孔隙率(10%、20%和35%)铌硅粉末混合物的冲击化学反应实验,对冲击回收产物物相、微观形貌表征分析及冲击产物热响应行为进行研究分析,发现不同孔隙率铌硅粉末混合物冲击反应的发生情况、产物特征及反应程度有所不同。低孔隙率(10%)样品几乎不发生反应;当孔隙率提高至20%时,铌硅粉末混合物发生不完全化学反应,生成NbSi2化合物;当孔隙率增大到35%时,相同冲击速度下铌硅粉末混合物发生完全反应,并获得与初始配比一致的Nb5Si3化合物。实验结果证实,适当增大铌硅粉末的初始孔隙率有利于发生冲击化学反应。

  • 图  裂隙岩样模型

    Figure  1.  Model of fissure rock sample

    图  室内试验[16]与PFC2D数值模拟结果对比

    Figure  2.  Comparison between indoor test[16] and PFC2D numerical simulation

    图  平行黏结破坏模式

    Figure  3.  Parallel bonding damage pattern

    图  不同围压和裂隙长度下岩样总裂纹的演化规律

    Figure  4.  Total cracks evolution of rock samples under different confining pressures and fissure lengths

    图  不同围压和裂隙长度下岩样剪切裂纹的演化规律

    Figure  6.  Shear cracks evolution of rock samples under different confining pressures and fissure lengths

    图  不同围压和裂隙长度下岩样拉伸裂纹的演化规律

    Figure  5.  Tensile cracks evolution of rock samples under different confining pressures and fissure lengths

    图  不同围压和裂缝长度下岩石试样失效后的裂纹数

    Figure  7.  Cracks number in rock specimens after failure under different confining pressures and fissure lengths

    图  不同围压下岩体最终破坏块体数

    Figure  8.  Final number of failure blocks of rock mass under different confining pressures

    图  不同围压下裂隙长度为2.5 mm的岩样块体的破碎形态

    Figure  9.  Crushing pattern of rock sample block with a fissure length of 2.5 mm under different confining pressures

    图  10  不同围压下裂隙长度为5 mm的岩样块体的破碎形态

    Figure  10.  Crushing pattern of rock sample block with a fissure length of 5 mm under different confining pressures

    图  11  不同围压下裂隙长度为10 mm的岩样块体的破碎形态

    Figure  11.  Crushing pattern of rock sample block with a fissure length of 10 mm under different confining pressures

    图  12  不同围压下裂隙长度为15 mm的岩样块体的破碎形态

    Figure  12.  Crushing pattern of rock sample block with a fissure length of 15 mm under different confining pressures

    图  13  岩样弹性应变能与耗散能的关系

    Figure  13.  Relationship between elastic strain energy and dissipation energy of rock samples

    图  14  10.0 MPa围压下不同岩样的能量转化曲线

    Figure  14.  Energy conversion curves of different rock samples under 10.0 MPa confining pressure

    图  15  裂隙岩样的储能极限

    Figure  15.  Energy storage limit of fissure rock samples

    图  16  峰值与峰后能量指标的对比

    Figure  16.  Comparison of the peak and post-peak energy metrics

    表  1  岩石PFC模型细观参数

    Table  1.   Mesoscopic parameters of the rock PFC model

    Minimum radius of particles/mm Ratio of maximum to minimum of radius Density of the particle/
    (kg·m−3)
    Friction coefficient Bond friction angle/(º)
    0.3 1.5 2 950 0.17 40
    Parallel bonding stiffness ratio Particle stiffness ratio Effective modulus of bonding/GPa Tangential bond strength/MPa Normal bond strength/MPa
    1.1 1.1 11 76.6 69.6
    下载: 导出CSV

    表  2  室内试验[16]与数值模拟对比

    Table  2.   Comparison between indoor test[16] and numerical simulation results

    Method Deviatoric stress/MPa Elastic modulus/MPa
    Indoor test[16] 144.782 17.147
    Numerical simulation 144.670 17.109
    Error/% 0.077 0.222
    下载: 导出CSV

    表  3  不同裂隙长度的岩样在不同围压下的接触力链演化过程

    Table  3.   Evolution of contact force chain of rock samples under different confining pressures and fissure lengths

    L/mm Confining pressure/MPa Pre-peak period Peak value Post-peak period
    05.0
    10.0
    55.0
    10.0
    105.0
    10.0
    下载: 导出CSV

    表  4  不同裂隙长度岩样的峰值点能量指标

    Table  4.   Indexes of peak point energy of rock samples with different fissure lengths

    L/mm Confining pressure/MPa Total energy/kJ Dissipated energy
    Energy/kJ Proportion/%
    0 2.5 288.67 9.54 3.30
    5.0 324.79 10.41 3.21
    10.0 415.48 14.47 3.48
    15.0 474.29 21.31 4.49
    5 2.5 248.58 8.24 3.31
    5.0 281.97 9.11 3.23
    10.0 348.54 12.51 3.59
    15.0 355.56 12.34 3.47
    10 2.5 172.37 4.89 2.84
    5.0 205.55 7.32 3.56
    10.0 279.90 9.16 3.27
    15.0 293.19 10.24 3.49
    15 2.5 153.98 5.86 3.8
    5.0 169.91 5.02 2.95
    10.0 215.02 7.95 3.70
    15.0 240.84 10.34 4.29
    下载: 导出CSV
  • [1] 李泓颖, 刘晓辉, 郑钰, 等. 深埋锦屏大理岩渐进破坏过程中的特征能量分析 [J]. 岩石力学与工程学报, 2022, 41(Suppl 2): 3229–3239.

    LI H Y, LIU X H, ZHENG Y, et al. Analysis of characteristic energy during the progressive failure of deep-buried marble in Jinping [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Suppl 2): 3229–3239.
    [2] 刘鹏飞, 范俊奇, 郭佳奇, 等. 三轴应力下花岗岩加载破坏的能量演化和损伤特征 [J]. 高压物理学报, 2021, 35(2): 024102. doi: 10.11858/gywlxb.20200622

    LIU P F, FAN J Q, GUO J Q, et al. Damage and energy evolution characteristics of granite under triaxial stress [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024102. doi: 10.11858/gywlxb.20200622
    [3] LI E B, GAO L, JIANG X Q, et al. Analysis of dynamic compression property and energy dissipation of salt rock under three-dimensional pressure [J]. Environmental Earth Sciences, 2019, 78(14): 388. doi: 10.1007/s12665-019-8389-7
    [4] DU X H, XUE J H, SHI Y, et al. Triaxial mechanical behaviour and energy conversion characteristics of deep coal bodies under confining pressure [J]. Energy, 2023, 266: 126443. doi: 10.1016/j.energy.2022.126443
    [5] 刘之喜, 孟祥瑞, 赵光明, 等. 真三轴压缩下砂岩的能量和损伤分析 [J]. 岩石力学与工程学报, 2023, 42(2): 327–341.

    LIU Z X, MENG X R, ZHAO G M, et al. Energy and damage analysis of sandstone under true triaxial compression [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 327–341.
    [6] ZHANG Y, FENG X T, ZHANG X W, et al. Strain energy evolution characteristics and mechanisms of hard rocks under true triaxial compression [J]. Engineering Geology, 2019, 260: 105222. doi: 10.1016/j.enggeo.2019.105222
    [7] 王星辰, 王志亮, 黄佑鹏, 等. 预制裂隙岩样宏细观力学行为颗粒流数值模拟 [J]. 水文地质工程地质, 2021, 48(4): 86–92.

    WANG X C, WANG Z L, HUANG Y P, et al. Particle flow simulation of macro- and meso-mechanical behavior of the prefabricated fractured rock sample [J]. Hydrogeology & Engineering Geology, 2021, 48(4): 86–92.
    [8] 方前程, 周科平, 刘学服. 不同围压下断续节理岩体破坏机制的颗粒流分析 [J]. 中南大学学报(自然科学版), 2014, 45(10): 3536–3543.

    FANG Q C, ZHOU K P, LIU X F. Failure mechanism of discontinuous joint rock mass under different confining pressures based on particle flow code [J]. Journal of Central South University (Science and Technology), 2014, 45(10): 3536–3543.
    [9] 黄明智, 李新平, 王刚, 等. 三轴压缩条件下单裂隙花岗岩破坏特性研究 [J]. 地下空间与工程学报, 2022, 18(4): 1208–1218.

    HUANG M Z, LI X P, WANG G, et al. Study on the failure characteristics of single-fissured granite under triaxial compression condition [J]. Chinese Journal of Underground Space and Engineering, 2022, 18(4): 1208–1218.
    [10] SONG L B, WANG G, WANG X K, et al. The influence of joint inclination and opening width on fracture characteristics of granite under triaxial compression [J]. International Journal of Geomechanics, 2022, 22(5): 04022031. doi: 10.1061/(ASCE)GM.1943-5622.0002372
    [11] 陈鹏宇, 孔莹, 余宏明. 岩石单轴压缩PFC2D模型细观参数标定研究 [J]. 地下空间与工程学报, 2018, 14(5): 1240–1249.

    CHEN P Y, KONG Y, YU H M. Research on the calibration method of microparameters of a uniaxial compression PFC2D model for rock [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1240–1249.
    [12] 张亮, 王桂林, 雷瑞德, 等. 单轴压缩下不同长度单裂隙岩体能量损伤演化机制 [J]. 中国公路学报, 2021, 34(1): 24–34. doi: 10.3969/j.issn.1001-7372.2021.01.003

    ZHANG L, WANG G L, LEI R D, et al. Energy damage evolution mechanism of single jointed rock mass with different lengths under uniaxial compression [J]. China Journal of Highway and Transport, 2021, 34(1): 24–34. doi: 10.3969/j.issn.1001-7372.2021.01.003
    [13] 周杰, 汪永雄, 周元辅. 基于颗粒流的砂岩三轴破裂演化宏-细观机理 [J]. 煤炭学报, 2017, 42(Suppl 1): 76–82.

    ZHOU J, WANG Y X, ZHOU Y F. Macro-micro evolution mechanism on sandstone failure in triaxial compression test based on PFC2D [J]. Journal of China Coal Society, 2017, 42(Suppl 1): 76–82.
    [14] 龙恩林, 陈俊智. 花岗岩颗粒流模型循环压缩作用下能量特征分析 [J]. 中国安全生产科学技术, 2019, 15(10): 95–100. doi: 10.11731/j.issn.1673-193x.2019.10.015

    LONG E L, CHEN J Z. Analysis on energy characteristics of granite particle flow model under cyclic compression [J]. Journal of Safety Science and Technology, 2019, 15(10): 95–100. doi: 10.11731/j.issn.1673-193x.2019.10.015
    [15] 李晓锋, 李海波, 夏祥, 等. 类节理岩石直剪试验力学特性的数值模拟研究 [J]. 岩土力学, 2016, 37(2): 583–591.

    LI X F, LI H B, XIA X, et al. Numerical simulation of mechanical characteristics of jointed rock in direct shear test [J]. Rock and Soil Mechanics, 2016, 37(2): 583–591.
    [16] 刘剑. 闪长岩加卸荷失稳破裂前兆信息研究 [D]. 昆明: 昆明理工大学, 2022.

    LIU J. Study on the precursor information of diorite plus unloading instability rupture [D]. Kunming: Kunming University of Science and Technology, 2022.
    [17] CHEN Z Q, HE C, MA G Y, et al. Energy damage evolution mechanism of rock and its application to brittleness evaluation [J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 1265–1274. doi: 10.1007/s00603-018-1681-0
    [18] WANG Q S, CHEN J X, GUO J Q, et al. Acoustic emission characteristics and energy mechanism in karst limestone failure under uniaxial and triaxial compression [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(3): 1427–1442. doi: 10.1007/s10064-017-1189-y
    [19] YANG S Q, LIU X R, JING H W. Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 63: 82–92. doi: 10.1016/j.ijrmms.2013.06.008
    [20] ZHANG X P, JIANG Y J, WANG G, et al. Mechanism of shear deformation, failure and energy dissipation of artificial rock joint in terms of physical and numerical consideration [J]. Geosciences Journal, 2019, 23(3): 519–529. doi: 10.1007/s12303-018-0043-y
    [21] FENG Q, JIN J C, ZHANG S, et al. Study on a damage model and uniaxial compression simulation method of frozen-thawed rock [J]. Rock Mechanics and Rock Engineering, 2022, 55(1): 187–211. doi: 10.1007/s00603-021-02645-2
    [22] 张志镇, 高峰. 受载岩石能量演化的围压效应研究 [J]. 岩石力学与工程学报, 2015, 34(1): 1–11.

    ZHANG Z Z, GAO F. Confining pressure effect on rock energy [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 1–11.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  75
  • PDF下载量:  30
出版历程
  • 收稿日期:  2024-01-31
  • 修回日期:  2024-03-21
  • 录用日期:  2024-05-27
  • 网络出版日期:  2024-07-22
  • 刊出日期:  2024-09-29

目录

/

返回文章
返回