碳纤维复合靶板抗破片冲击性能研究

李巧歌 梁增友 王春光 郝永强

李巧歌, 梁增友, 王春光, 郝永强. 碳纤维复合靶板抗破片冲击性能研究[J]. 高压物理学报, 2024, 38(4): 044103. doi: 10.11858/gywlxb.20240720
引用本文: 李巧歌, 梁增友, 王春光, 郝永强. 碳纤维复合靶板抗破片冲击性能研究[J]. 高压物理学报, 2024, 38(4): 044103. doi: 10.11858/gywlxb.20240720
LI Qiaoge, LIANG Zengyou, WANG Chunguang, HAO Yongqiang. Study on Anti-Fragment Impact Performance of Carbon Fiber Reinforced Plastics[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 044103. doi: 10.11858/gywlxb.20240720
Citation: LI Qiaoge, LIANG Zengyou, WANG Chunguang, HAO Yongqiang. Study on Anti-Fragment Impact Performance of Carbon Fiber Reinforced Plastics[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 044103. doi: 10.11858/gywlxb.20240720

碳纤维复合靶板抗破片冲击性能研究

doi: 10.11858/gywlxb.20240720
基金项目: 山西省科技厅省基础研究计划项目(202103021224210)
详细信息
    作者简介:

    李巧歌(1999-),女,硕士研究生,主要从事高效毁伤理论与技术、弹箭结构设计等研究. E-mail:1901041103@st.nuc.edu.cn

    通讯作者:

    梁增友(1969-),男,博士,教授,主要从事弹药装药与安全技术、弹箭高效毁伤与控制技术、弹箭结构设计与仿真、新型远程弹技术等研究. E-mail:liangzy@nuc.edu.cn

  • 中图分类号: O347; TJ04

Study on Anti-Fragment Impact Performance of Carbon Fiber Reinforced Plastics

  • 摘要: 为探究碳纤维复合材料的抗破片侵彻性能,进行了8 g立方体钢破片侵彻厚度分别为5、10、15 mm碳纤维复合材料靶板试验,获取破片着靶速度,并回收破片、靶板,观测靶板破坏情况。根据试验情况进行数值模拟,探究破片侵彻碳纤维复合材料靶板的过程及碳纤维复合材料靶板的破坏机理,由此得到靶板破坏形式与破片速度的关系:破片速度大于弹道极限时,靶板以纤维的剪切破坏为主;破片速度逐渐降低时,纤维的拉伸破坏、基体破裂与纤维层分层多种破坏形式所占比重随着破片速度的变化而变化。

     

  • 图  破片侵彻碳纤维复合材料靶板试验系统

    Figure  1.  Test system of fragments penetrating carbon fiber composite target

    图  8 g钢破片

    Figure  2.  8 g steel fragments

    图  破片和弹托装配

    Figure  3.  Fragments and sabots assembly

    图  破片和发射药筒装配

    Figure  4.  Fragment and propellant cartridge

    图  破片侵彻5 mm厚碳纤维复合材料靶板的破坏形态

    Figure  5.  Failure mode of fragment penetrating 5 mm thick carbon fiber composite target

    图  破片侵彻10 mm厚碳纤维复合材料靶板的破坏形态

    Figure  6.  Failure mode of fragment penetrating 10 mm thick carbon fiber composite target

    图  破片侵彻15 mm厚碳纤维复合材料靶板的破坏形态

    Figure  7.  Failure mode of fragment penetrating 15 mm thick carbon fiber composite target

    图  钢破片的有限元模型

    Figure  8.  Finite element model of the steel fragment

    图  碳纤维复合材料靶板有限元模型

    Figure  9.  Finite element model of carbon fiber composite target plate

    图  10  破片侵彻碳纤维复合材料有限元模型

    Figure  10.  Finite element model of fragment penetrating carbon fiber composite material

    图  11  破片以不同姿态侵彻碳纤维复合靶板

    Figure  11.  Fragments penetrating carbon fiber composite target plates with different attitudes

    图  12  破片侵彻碳纤维复合靶板过程

    Figure  12.  Process diagram of fragment penetrating carbon fiber composite target plate

    图  13  破片侵彻5 mm厚碳纤维复合材料靶板结果对比

    Figure  13.  Comparison of the results of fragment penetrating 5 mm thick carbon fiber composite target

    图  14  破片侵彻10 mm厚碳纤维复合材料靶板结果对比

    Figure  14.  Comparison of the results of fragment penetrating 10 mm thick carbon fiber composite target

    图  15  破片侵彻15 mm厚碳纤维复合材料靶板结果对比

    Figure  15.  Comparison of the results of fragment penetrating 15 mm thick carbon fiber composite target

    表  1  碳纤维复合材料的力学性能参数

    Table  1.   Mechanical properties of carbon fiber composites plate

    $ {\sigma }_{x\mathrm{t}} $/
    MPa
    $ {E}_{1\mathrm{t}} $/
    GPa
    $ {\sigma }_{y\mathrm{t}} $/
    MPa
    $ {E}_{2\mathrm{t}} $/
    GPa
    $ {\sigma }_{x\mathrm{c}} $/
    MPa
    $ {E}_{1\mathrm{c}} $/
    GPa
    $ {\sigma }_{y\mathrm{c}} $/
    MPa
    $ {E}_{2\mathrm{c}} $/
    GPa
    $ {\tau }_{12} $/
    MPa
    $ {G}_{12} $/
    GPa
    $ {\tau }_{\mathrm{J}} $/
    MPa
    $ {\gamma }_{12} $
    1755 138 48 8.36 1248 128 214 8.48 113 4.51 21.5 0.27
    下载: 导出CSV

    表  2  破片侵彻靶板的损伤区域统计

    Table  2.   Statistic of damage area of fragment penetrating target

    Target thickness/mm Failure pattern Impact velocity/
    (m·s–1)
    Damage area of the
    projectile surface/
    (mm×mm)
    Damage area of back
    elastic surface/
    (mm×mm)
    5 Local penetration 328 10.92×9.60 11.55×12.24
    Complete penetration 340 13.76×10.50 23.10×25.10
    10 Local penetration 398 10.63×10.21 29.80×31.42
    Complete penetration 412 14.56×10.36 30.30×17.22
    15 Local penetration 443 16.26×8.35
    Complete penetration 453 15.49×11.22 33.23×24.05
    下载: 导出CSV

    表  3  钢破片材料参数

    Table  3.   Material parameters of steel fragment

    $ \rho $/(g·cm–3) G/GPa A/MPa B/MPa n c M TM/K TR/K
    7.83 0.77 792 510 0.26 0.014 1.03 1793 294
    下载: 导出CSV

    表  4  试验和数值模拟得到的弹道极限误差

    Table  4.   Ballistic limit error of test and numerical simulation

    Target thickness/mm Ballistic limit velocity/(m·s–1) Deviation/%
    Test Simulation
    5 334 307.76 7.86
    10 405 394.78 2.52
    15 448 437.55 2.33
    下载: 导出CSV
  • [1] ANUSE V S, SHANKAR K, VELMURUGAN R, et al. LVI and CAI analysis of woven carbon fiber reinforced composite laminates with different stacking sequence [J]. Key Engineering Materials, 2023, 969: 93–100. doi: 10.4028/p-n2McuG
    [2] 常新龙, 孙超凡, 齐重阳, 等. 集成于碳纤维复合材料的fsFBG响应特性研究 [J]. 兵器装备工程学报, 2024, 45(1): 208–216. doi: 10.11809/bqzbgcxb2024.01.027

    CHANG X L, SUN C F, QI C Y, et al. Response characteristics of fsFBG sensor based on carbon fiber composite laminate [J]. Journal of Ordnance Equipment Engineering, 2024, 45(1): 208–216. doi: 10.11809/bqzbgcxb2024.01.027
    [3] HOSUR M V, ALEXANDER J, JEELANI S, et al. High strain compression response of affordable woven carbon/epoxy composites [J]. Journal of Reinforced Plastics and Composites, 2003, 22(3): 271–296. doi: 10.1177/0731684403022003844
    [4] ABRATE S. Impact on laminated composites: recent advances [J]. Applied Mechanics Reviews, 1994, 47(11): 517–544. doi: 10.1115/1.3111065
    [5] 金子明, 隋金玲, 张菡英, 等. 纤维增强复合防弹板研究进展及抗弹性能研究 [J]. 玻璃钢, 2001(1): 1–6.

    JIN Z M, SUI J L, ZHANG H Y, et al. Research progress and anti-elastic properties of fiber reinforced composite bulletproof panels [J]. Fiber Reinforced Plastics, 2001(1): 1–6.
    [6] MORYE S S, HINE P J, DUCKETT R A, et al. Modelling of the energy absorption by polymer composites upon ballistic impact [J]. Composites Science and Technology, 2000, 60(14): 2631–2642. doi: 10.1016/S0266-3538(00)00139-1
    [7] LIU P F, ZHENG J Y. Recent developments on damage modeling and finite element analysis for composite laminates: a review [J]. Materials & Design, 2010, 31(8): 3825–3834. doi: 10.1016/j.matdes.2010.03.031
    [8] ORIFICI A C, HERSZBERG I, THOMSON R S. Review of methodologies for composite material modelling incorporating failure [J]. Composite Structures, 2008, 86(1/2/3): 194–210. doi: 10.1016/j.compstruct.2008.03.007
    [9] BØRVIK T, LANGSETH M, HOPPERSTAD O S, et al. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: part Ⅰ: experimental study [J]. International Journal of Impact Engineering, 2002, 27(1): 19–35. doi: 10.1016/S0734-743X(01)00034-3
    [10] BØRVIK T, HOPPERSTAD O S, BERSTAD T, et al. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses. part Ⅱ: numerical simulations [J]. International Journal of Impact Engineering, 2002, 27(1): 37–64. doi: 10.1016/S0734-743X(01)00035-5
    [11] IQBAL M A, GUPTA N K. Ballistic limit of single and layered aluminium plates [J]. Strain, 2011, 47(Suppl 1): e205–e219. doi: 10.1111/j.1475-1305.2008.00601.x
    [12] GUPTA N K, IQBAL M A, SEKHON G S. Experimental and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt- and hemispherical-nosed projectiles [J]. International Journal of Impact Engineering, 2006, 32(12): 1921–1944. doi: 10.1016/j.ijimpeng.2005.06.007
    [13] 刘璐璐, 宣海军, 洪伟荣, 等. 锻纹机织复合材料高速冲击试验研究及理论分析 [J]. 中国科技论文, 2016, 11(10): 1169–1174. doi: 10.3969/j.issn.2095-2783.2016.10.020

    LIU L L, XUAN H J, HONG W R, et al. Experimental study and theoretical analysis on high velocity impact of satin woven carbon fiber reinforced composites [J]. China Sciencepaper, 2016, 11(10): 1169–1174. doi: 10.3969/j.issn.2095-2783.2016.10.020
    [14] 邓云飞, 袁家俊, 徐建新. 半球形头弹不同角度冲击下编织复合材料板的侵彻特性 [J]. 复合材料学报, 2018, 35(4): 843–849. doi: 10.13801/j.cnki.fhclxb.20170704.002

    DENG Y F, YUAN J J, XU J X. Penetration characteristics of woven composite laminates impacted by hemispherical-nosed projectiles at different angles [J]. Acta Materiae Compositae Sinica, 2018, 35(4): 843–849. doi: 10.13801/j.cnki.fhclxb.20170704.002
    [15] 邓云飞, 袁家俊, 徐建新. 刚性卵形头弹撞击角度对编织复合材料层合板侵彻特性的影响 [J]. 复合材料学报, 2018, 35(8): 2039–2045. doi: 10.13801/j.cnki.fhclxb.20170829.004

    DENG Y F, YUAN J J, XU J X. Influence of the impact angle of rigid ogival-nosed projectiles on the penetration characteristics of woven composite laminates [J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2039–2045. doi: 10.13801/j.cnki.fhclxb.20170829.004
    [16] 谢文波, 张伟, 姜雄文. 钢球斜侵彻碳纤维复合材料板的实验研究 [J]. 爆炸与冲击, 2018, 38(3): 647–653. doi: 10.11883/bzycj-2016-0289

    XIE W B, ZHANG W, JIANG X W. Oblique penetration on CFRPs by steel sphere [J]. Explosion and Shock Waves, 2018, 38(3): 647–653. doi: 10.11883/bzycj-2016-0289
    [17] 彭捷, 张伟岐, 田锐, 等. 碳纤维层合板抗球形弹冲击动态响应特性试验研究 [J]. 复合材料科学与工程, 2020(6): 18–24, 56. doi: 10.3969/j.issn.1003-0999.2020.06.003

    PENG J, ZHANG W Q, TIAN R, et al. Experimental study on the dynamic response of carbon fiber laminates impacted by spherical projectile [J]. Composites Science and Engineering, 2020(6): 18–24, 56. doi: 10.3969/j.issn.1003-0999.2020.06.003
    [18] 赵稼祥. 日本东丽公司碳纤维和石墨纤维的新进展 [J]. 宇航材料工艺, 1982(5): 37.

    ZHAO J X. New progress of carbon fiber and graphite fiber of toray corporation, japan [J]. Aerospace Materials & Technology, 1982(5): 37.
    [19] QI S B, HUANG G Y, ZHI X D, et al. External blast flow field evolution and response mechanism of single-layer reticulated dome structure [J]. Defence Technology, 2023, 24: 241–253. doi: 10.1016/j.dt.2022.04.003
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  30
  • PDF下载量:  24
出版历程
  • 收稿日期:  2024-01-30
  • 修回日期:  2024-02-23
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回