花岗岩板双基火药切槽爆破破坏过程研究

王多良 李洪伟 梁昊 李世影 吴延梦 赵静 李纯志 肖忠良

王多良, 李洪伟, 梁昊, 李世影, 吴延梦, 赵静, 李纯志, 肖忠良. 花岗岩板双基火药切槽爆破破坏过程研究[J]. 高压物理学报, 2024, 38(4): 045302. doi: 10.11858/gywlxb.20240711
引用本文: 王多良, 李洪伟, 梁昊, 李世影, 吴延梦, 赵静, 李纯志, 肖忠良. 花岗岩板双基火药切槽爆破破坏过程研究[J]. 高压物理学报, 2024, 38(4): 045302. doi: 10.11858/gywlxb.20240711
WANG Duoliang, LI Hongwei, LIANG Hao, LI Shiying, WU Yanmeng, ZHAO Jing, LI Chunzhi, XIAO Zhongliang. Damage Process of Double Base Propellant Grooved Blasting on Granite Slab[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 045302. doi: 10.11858/gywlxb.20240711
Citation: WANG Duoliang, LI Hongwei, LIANG Hao, LI Shiying, WU Yanmeng, ZHAO Jing, LI Chunzhi, XIAO Zhongliang. Damage Process of Double Base Propellant Grooved Blasting on Granite Slab[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 045302. doi: 10.11858/gywlxb.20240711

花岗岩板双基火药切槽爆破破坏过程研究

doi: 10.11858/gywlxb.20240711
基金项目: 安徽高校自然科学研究项目(2022yjrc17)
详细信息
    作者简介:

    王多良(2000-),男,硕士研究生,主要从发射药及装药研究. E-mail:wangduoliang0720@163.com

    通讯作者:

    李洪伟(1979-),男,硕士,教授,主要从事爆炸技术及应用研究. E-mail:lihw@aust.edu.cn

  • 中图分类号: O346.1; TJ562

Damage Process of Double Base Propellant Grooved Blasting on Granite Slab

  • 摘要: 针对目前炸药切槽爆破存在非切槽方向上岩石破坏的问题,研究了双基火药切槽爆破特性。基于火药燃气释放规律,计算了双基火药被激发后密闭炮孔内的压力变化情况。结合高速摄影和数字图像相关(digital image correlation, DIC)方法,开展了炮孔的火药装填密度分别为0.84和0.96 g/cm3的2组实验,探究了火药作用下花岗岩板的动态破坏过程。结果表明:火药点火后,2组实验中花岗岩板均在100 μs时沿切槽方向起裂,200 μs时裂纹贯穿石板;当装填密度为0.96 g/cm3时,试件在断裂后上下石板分离速度较大,在封堵橡胶的摩擦力和试件惯性的共同作用下,2500 μs时上下石板被横向拉裂,裂纹沿垂直方向。炮孔预制切槽为火药燃气的气楔作用提供了空间,很好地引导裂纹的扩展,孔壁周围没有形成压碎区。双基火药燃烧产生的准静态压力是裂纹起裂、扩展的主要动力。研究结果为双基火药在岩体定向爆破上的应用提供了参考。

     

  • 图  应力强度因子的修正系数

    Figure  1.  Correction factor for stress intensity factor

    图  切槽爆破的断裂力学模型

    Figure  2.  Fracture mechanics model of groove blasting

    图  水射流加工后的花岗岩板

    Figure  3.  Granite specimens processed by water jetting

    图  高速摄影实验平台

    Figure  4.  High-speed photography experiment platform

    图  DIC原理示意图

    Figure  5.  Schematic diagram of the principle of DIC method

    图  破坏后的试件

    Figure  6.  Specimens after destruction

    图  2个试件的压力-已燃质量百分比曲线

    Figure  7.  Pressure-percentage of burned mass curves of two specimens

    图  试件1的高速摄影结果

    Figure  8.  High-speed photographic results of specimen 1

    图  试件2的高速摄影结果

    Figure  9.  High-speed photographic results of specimen 2

    图  10  试件1的DIC分析结果

    Figure  10.  DIC analysis results of specimen 1

    图  11  试件1测点的位置

    Figure  11.  Measurement points locations of specimen 1

    图  12  测点A1A2的位移-时间曲线

    Figure  12.  Displacement-time curves of points A1 and A2

    图  13  试件2的DIC分析结果

    Figure  13.  DIC analysis results of specimen 2

    图  14  试件2中测点的位置

    Figure  14.  Measurement points’ locations of specimen 2

    图  15  测点B1B2的位移-时间曲线

    Figure  15.  Displacement-time curves of points B1 and B2

    图  16  测点C1C2的位移-时间曲线

    Figure  16.  Displacement-time curves of points C1 and C2

    表  1  几种岩石的断裂韧度

    Table  1.   Fracture toughness for several rock types

    Type of rock$ {K_{{\rm I}{{\mathrm{C}}} }} $/(MPa·m1/2Type of rockKIC/(MPa·m1/2
    Siltstone0.35–2.56Dolostones1.70–2.57
    Limestone0.95–2.17Granite1.12–2.80
    Shale0.42–1.10Marble0.82–2.67
    下载: 导出CSV

    表  2  实验用花岗岩板的力学参数

    Table  2.   Mechanical parameters of experimental granite specimens

    Density/(g·cm−3) Elastic
    modulus/GPa
    Poisson’s
    ratio
    Compressive
    strength/MPa
    Tensile
    strength/MPa
    Dynamic tensile
    strength/MPa
    2.72 41 0.23 200 20 32
    下载: 导出CSV
  • [1] 汪旭光. 爆破设计与施工 [M]. 北京: 冶金工业出版社, 2011: 28–33.
    [2] 范勇, 孙金山, 贾永胜, 等. 高地应力硐室光面爆破孔间应力相互作用与成缝机制 [J]. 岩石力学与工程学报, 2023, 42(6): 1352–1365.

    FAN Y, SUN J S, JIA Y S, et al. Stress interaction and crack penetration mechanism between smooth blasting holes for tunnel excavation under high in-situ stress [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(6): 1352–1365.
    [3] XU J C, WANG Z L, RUI G R. Tunnel slotting-blasting numerical modeling using rock tension-compression coupling damage algorithm [J]. Applied Sciences, 2022, 12(13): 6714. doi: 10.3390/app12136714
    [4] WANG Z L, WANG H C, WANG J G, et al. Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks [J]. Computers and Geotechnics, 2021, 135: 104172. doi: 10.1016/j.compgeo.2021.104172
    [5] HOLLOWAY D C, BJARRNHOLT G, WILSON W H. A field study of fracture control techniques for smooth wall blasting [C]//The 27th U. S. Symposium on Rock Mechanics (USRMS). Tuscaloosa, Alabama: ARMA, 1986: 456−463.
    [6] 宗琦. 岩石炮孔预切槽爆破断裂成缝机理研究 [J]. 岩土工程学报, 1998, 20(1): 30–33. doi: 10.3321/j.issn:1000-4548.1998.01.008

    ZONG Q. Investigations into mechanism of crack formation for grooved hole-well blasting [J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 30–33. doi: 10.3321/j.issn:1000-4548.1998.01.008
    [7] 岳中文, 郭洋, 王煦. 切槽孔爆炸载荷下裂纹扩展行为的实验研究 [J]. 岩石力学与工程学报, 2015, 34(10): 2018–2026.

    YUE Z W, GUO Y, WANG X. Experimental study of crack propagation under blasting load in notched boreholes [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 2018–2026.
    [8] 杨立云, 董鹏翔, 王启睿, 等. 爆生气体驱动双共线Ⅰ型裂纹的扩展行为 [J]. 矿业科学学报, 2023, 8(4): 538–547.

    YANG L Y, DONG P X, WANG Q R, et al. Propagation behavior of two collinear mode Ⅰ cracks driven by explosive gas [J]. Journal of Mining Science and Technology, 2023, 8(4): 538–547.
    [9] DAEHNKE A, ROSSMANITH H P, NAPIER J A L. Gas pressurisation of blast-induced conical cracks [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3/4): 626.
    [10] 王树仁, 朱振海, 魏有志. 爆生气体对破岩作用的动光弹研究 [J]. 煤炭学报, 1986(1): 11–22.

    WANG S R, ZHU Z H, WEI Y Z. Dynamic photoelastic investigation of rock fragmentation by explosive gas [J]. Journal of China Coal Society, 1986(1): 11–22.
    [11] 杨仁树, 苏洪. 爆炸荷载下含预裂缝的裂纹扩展实验研究 [J]. 煤炭学报, 2019, 44(2): 482–489.

    YANG R S, SU H. Experimental study on crack propagation with pre-crack under explosion load [J]. Journal of China Coal Society, 2019, 44(2): 482–489.
    [12] 肖川, 宋浦, 张默贺. 含能材料发展的若干思考 [J]. 火炸药学报, 2022, 45(4): Ⅰ–Ⅳ. doi: 10.14077/j.issn.1007-7812.202206026
    [13] 李世影, 肖忠良, 李宇, 等. 某中小口径武器用梯度硝基发射装药效应 [J]. 含能材料, 2023, 31(11): 1134–1140. doi: 10.11943/CJEM2022243

    LI S Y, XIAO Z L, LI Y, et al. Study on the effect of nitro gradiently distributed propellant charge for a small and medium caliber weapon [J]. Chinese Journal of Energetic Materials, 2023, 31(11): 1134–1140. doi: 10.11943/CJEM2022243
    [14] 薛冰, 凌静, 陈华东, 等. 单基发射药与乳化炸药爆破振动特性对比研究 [J]. 爆破, 2022, 39(3): 145–150, 208. doi: 10.3963/j.issn.1001-487X.2022.03.022

    XUE B, LING J, CHEN H D, et al. Comparative study on blasting vibration characteristics of single-base gun propellant and emulsion explosive [J]. Blasting, 2022, 39(3): 145–150, 208. doi: 10.3963/j.issn.1001-487X.2022.03.022
    [15] 薛冰, 唐运彬, 赵静, 等. 单基发射药孤石爆破特性实验研究 [J]. 爆破, 2022, 39(2): 140–146. doi: 10.3963/j.issn.1001-487X.2022.02.021

    XUE B, TANG Y B, ZHAO J, et al. Experimental study on boulder blasting characteristics of single-base gun propellant [J]. Blasting, 2022, 39(2): 140–146. doi: 10.3963/j.issn.1001-487X.2022.02.021
    [16] 张小兵. 枪炮内弹道学 [M]. 北京: 北京理工大学出版社, 2014: 98–108.

    ZHANG X B. Interior ballistics of guns [M]. Beijing: Beijing Institute of Technology Press, 2014: 98–108.
    [17] 宗琦. 爆生气体的准静态破岩特性 [J]. 岩土力学, 1997, 18(2): 73–78. doi: 10.16285/j.rsm.1997.02.014

    ZONG Q. Investigation on features of rock quasi-static fragmentation by gaseous explosion product [J]. Rock and Soil Mechanics, 1997, 18(2): 73–78. doi: 10.16285/j.rsm.1997.02.014
    [18] 王铎. 断裂力学 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1989: 52−59.
    [19] 秦虎. 边界元法在断裂控制机理研究中的应用 [J]. 矿冶, 1994, 3(4): 13–16, 6.

    QIN H. Application of boundary element method to a study of fracture control mechanism [J]. Mining and Metallurgy, 1994, 3(4): 13–16, 6.
    [20] LIN Q, YUAN H N, BIOLZI L, et al. Opening and mixed mode fracture processes in a quasi-brittle material via digital imaging [J]. Engineering Fracture Mechanics, 2014, 131: 176–193. doi: 10.1016/j.engfracmech.2014.07.028
    [21] YAMAGUCHI I. A laser-speckle strain gauge [J]. Journal of Physics E: Scientific Instruments, 1981, 14(11): 1270–1273. doi: 10.1088/0022-3735/14/11/012
    [22] 赵宏立, 刘来东, 靳建伟, 等. 压力下降条件下一种双基发射药的瞬态燃烧特性 [J]. 火炸药学报, 2012, 35(1): 64–68. doi: 10.3969/j.issn.1007-7812.2012.01.015

    ZHAO H L, LIU L D, JIN J W, et al. Transient combustion performance of gun propellant under depressurization condition [J]. Chinese Journal of Explosives & Propellants, 2012, 35(1): 64–68. doi: 10.3969/j.issn.1007-7812.2012.01.015
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  49
  • PDF下载量:  24
出版历程
  • 收稿日期:  2024-01-16
  • 修回日期:  2024-03-13
  • 录用日期:  2024-03-27
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回