地球内核超离子态铁合金及其效应

何宇 孙士川 李和平

何宇, 孙士川, 李和平. 地球内核超离子态铁合金及其效应[J]. 高压物理学报, 2024, 38(3): 030202. doi: 10.11858/gywlxb.20240707
引用本文: 何宇, 孙士川, 李和平. 地球内核超离子态铁合金及其效应[J]. 高压物理学报, 2024, 38(3): 030202. doi: 10.11858/gywlxb.20240707
HE Yu, SUN Shichuan, LI Heping. Superionic Iron Alloys in Earth’s Inner Core and Their Effects[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030202. doi: 10.11858/gywlxb.20240707
Citation: HE Yu, SUN Shichuan, LI Heping. Superionic Iron Alloys in Earth’s Inner Core and Their Effects[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030202. doi: 10.11858/gywlxb.20240707

地球内核超离子态铁合金及其效应

doi: 10.11858/gywlxb.20240707
基金项目: 国家自然科学基金(42074104);中国科学院青年交叉团队项目(JCTD-2022-16)
详细信息
    作者简介:

    何 宇(1985-),男,博士,研究员,主要从事高温高压下地球内部物质性质的计算模拟研究.E-mail:heyu@mail.gyig.ac.cn

  • 中图分类号: O521.2; P313

Superionic Iron Alloys in Earth’s Inner Core and Their Effects

  • 摘要: 超离子态介于固态与液态之间,被认为广泛存在于地球和行星内部。计算研究发现,在地球内核温度压力条件下,铁-氢、铁-碳、铁-氧合金处于超离子态,表现为氢、碳、氧等元素在固态铁合金中像液体一样快速流动。流动的轻元素导致铁合金软化及地震波速降低,与地球物理观测到的内核密度亏损和低剪切波速的特征一致。内核超离子态铁-氢合金可以与地磁场发生相互作用,在偶极地磁场的驱动下形成定向排列组构,从而解释了内核的各向异性结构成因。内核超离子态铁-轻元素合金的发现更新了人们对内核物态的认知,对掌握地球内核的结构、组成和演化以及内核结构与地球磁场的关系等具有重要意义。

     

  • 图  常压下H和C在金属中的扩散系数随温度的变化关系[39]

    Figure  1.  Diffusion coefficients of H and C in different metals versus temperature at normal pressure[39]

    图  超离子态和液态下Fe-C、Fe-H、Fe-O合金中Fe和轻元素(C、H、O)的MSD随模拟时间的变化关系

    Figure  2.  MSD-time curves of light elements (C, H, and O) in superionic and liquid Fe-C, Fe-H and Fe-O alloys

    图  260和360 GPa下C、H、O在hcp铁合金中的扩散系数随温度的变化关系

    Figure  3.  Diffusion coefficients of C, H, and O in hcp-Fe versus temperature at 260 and 360 GPa

    图  360 GPa下超离子态hcp相FeH0.25、FeO0.0625和FeC0.0625的纵波波速(vP)和横波波速(vS)随温度的变化(文献中的计算结果:hcp-Fe的波速和预熔化效应(蓝色)[52]、6600 K时bcc-Fe的波速(橙色)[58]、5000 K时bcc-Fe13Si3的Voigt模型波速(青色)以及Voigt-Ruess-Hill(VRH)波速(紫色)[59]

    Figure  4.  Compressional (vP) and shear (vS) wave velocities in hcp-FeH0.25, hcp-FeO0.0625 and hcp-FeC0.0625 as a function of temperature at 360 GPa upon superionic transition (In comparison with previous calculation results of pure hcp-Fe with the effect of pre-melting (blue symbols)[52], seismic velocities in bcc-Fe at 6600 K (orange symbols)[58], and seismic velocities in bcc-Fe13Si3 at 5000 K with Voigt and Voigt-Ruess-Hill (VRH) model, respectively (cyan and purple symbols)[59].)

    图  (a) 内核中地磁场示意图以及随深度变化的各向异性构造变化[36],(b) 蓝色区域的超离子态波速模型与观测值的对比[66],(c) 最内核(绿色区域)模型波速与观测值的对比[22, 27, 67]

    Figure  5.  (a) Schematic diagram of poloidal and toroidal geomagnetic field in the inner core (IC) and depth-dependent anisotropic texture change[36]; (b) the superionic model at the depth of blue area in comparison with geophysical observation data[66]; (c) the superionic model of innermost inner core (green area) in comparison with geophysical observation data[22, 27, 67]

    表  1  H、O、C在超离子态铁-轻元素合金中的扩散活化焓和超离子态转变温度

    Table  1.   Diffusion enthalpy of H, O, and C in superionic Fe-light element alloys and their superionic transition temperatures

    Alloy Pressure/GPa D0/(cm2·s−1) ΔH/eV Ts/K
    FeH0.25 260 0.148 1.58 2000
    360 0.317 2.14 2230
    FeO0.0625 260 0.079 1.62 2350
    360 0.067 1.72 2630
    FeC0.0625 260 0.087 1.83 2600
    360 0.074 1.60 2360
    下载: 导出CSV
  • [1] FARADAY M. Ⅶ. experimental researches in electricity: twelfth series [J]. Philosophical Transactions of the Royal Society of London, 1838, 128: 83–123. doi: 10.1098/rstl.1838.0008
    [2] TUBANDT C, LORENZ E. Molekularzustand und elektrisches leitvermögen kristallisierter salze [J]. Zeitschrift für Physikalische Chemie, 1914, 87U(1): 513–542. doi: 10.1515/zpch-1914-8737
    [3] DEMONTIS P, LESAR R, KLEIN M L. New high-pressure phases of ice [J]. Physical Review Letters, 1988, 60(22): 2284–2287. doi: 10.1103/PhysRevLett.60.2284
    [4] MILLOT M, COPPARI F, RYGG J R, et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice [J]. Nature, 2019, 569(7755): 251–255. doi: 10.1038/s41586-019-1114-6
    [5] CAVAZZONI C, CHIAROTTI G L, SCANDOLO S, et al. Superionic and metallic states of water and ammonia at giant planet conditions [J]. Science, 1999, 283(5398): 44–46. doi: 10.1126/science.283.5398.44
    [6] REDMER R, MATTSSON T R, NETTELMANN N, et al. The phase diagram of water and the magnetic fields of Uranus and Neptune [J]. Icarus, 2011, 211(1): 798–803. doi: 10.1016/j.icarus.2010.08.008
    [7] LIU C, GAO H, WANG Y, et al. Multiple superionic states in helium-water compounds [J]. Nature Physics, 2019, 15(10): 1065–1070. doi: 10.1038/s41567-019-0568-7
    [8] KIMURA T, MURAKAMI M. Fluid-like elastic response of superionic NH3 in Uranus and Neptune [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(14): e2021810118.
    [9] BINNS J, HERMANN A, PEÑA-ALVAREZ M, et al. Superionicity, disorder, and bandgap closure in dense hydrogen chloride [J]. Science Advances, 2021, 7(36): eabi9507. doi: 10.1126/sciadv.abi9507
    [10] LI H F, OGANOV A R, CUI H X, et al. Ultrahigh-pressure magnesium hydrosilicates as reservoirs of water in early Earth [J]. Physical Review Letters, 2022, 128(3): 035703. doi: 10.1103/PhysRevLett.128.035703
    [11] LI J W, LIN Y H, MEIER T. Silica-water superstructure and one-dimensional superionic conduit in Earth’s mantle [J]. Science Advances, 2023, 9(35): eadh3784. doi: 10.1126/sciadv.adh3784
    [12] HOU M Q, HE Y, JANG B G, et al. Superionic iron oxide-hydroxide in Earth’s deep mantle [J]. Nature Geoscience, 2021, 14(3): 174–178. doi: 10.1038/s41561-021-00696-2
    [13] HIROSE K, WOOD B, VOČADLO L, et al. Light elements in the Earth’s core [J]. Nature Reviews Earth & Environment, 2021, 2(9): 645–658. doi: 10.1038/s43017-021-00203-6
    [14] 刘锦, 吕超甲, 赵超帅. 矿物高压稳定性与深部挥发分循环过程 [J]. 矿物岩石地球化学通报, 2022, 41(2): 245–259. doi: 10.19658/j.issn.1007-2802.2022.41.011

    LIU J, LYU C J, ZHAO C S. High-pressure stability of minerals and volatiles cycling in the deep Earth [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(2): 245–259. doi: 10.19658/j.issn.1007-2802.2022.41.011
    [15] BIRCH F. Elasticity and constitution of the Earth’s interior [J]. Journal of Geophysical Research: Solid Earth, 1952, 57(2): 227–286. doi: 10.1029/JZ057i002p00227
    [16] TATENO S, HIROSE K, OHISHI Y, et al. The structure of iron in Earth’s inner core [J]. Science, 2010, 330(6002): 359–361. doi: 10.1126/science.1194662
    [17] TURNEAURE S J, SHARMA S M, GUPTA Y M. Crystal structure and melting of Fe shock compressed to 273 GPa: in situ X-ray diffraction [J]. Physical Review Letters, 2020, 125(21): 215702. doi: 10.1103/PhysRevLett.125.215702
    [18] KRAUS R G, HEMLEY R J, ALI S J et al. Measuring the melting curve of iron at super-Earth core conditions [J]. Science, 2022, 375(6577): 202–205. doi: 10.1126/science.abm1472
    [19] VOČADLO L, ALFÈ D, GILLAN M J, et al. Possible thermal and chemical stabilization of body-centred-cubic iron in the Earth’s core [J]. Nature, 2003, 424(6948): 536–539. doi: 10.1038/nature01829
    [20] BELONOSHKO A B, AHUJA R, JOHANSSON B. Stability of the body-centred-cubic phase of iron in the Earth’s inner core [J]. Nature, 2003, 424(6952): 1032–1034. doi: 10.1038/nature01954
    [21] BELONOSHKO A B, LUKINOV T, FU J, et al. Stabilization of body-centred cubic iron under inner-core conditions [J]. Nature Geoscience, 2017, 10(4): 312–316. doi: 10.1038/ngeo2892
    [22] DZIEWONSKI A M, ANDERSON D L. Preliminary reference Earth model [J]. Physics of the Earth and Planetary Interiors, 1981, 25(4): 297–356. doi: 10.1016/0031-9201(81)90046-7
    [23] SONG X D. Anisotropy of the Earth’s inner core [J]. Reviews of Geophysics, 1997, 35(3): 297–313. doi: 10.1029/97RG01285
    [24] DEUSS A. Heterogeneity and anisotropy of Earth’s inner core [J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 103–126. doi: 10.1146/annurev-earth-060313-054658
    [25] MORELLI A, DZIEWONSKI A M, WOODHOUSE J H. Anisotropy of the inner core inferred from PKIKP travel times [J]. Geophysical Research Letters, 1986, 13(13): 1545–1548. doi: 10.1029/GL013i013p01545
    [26] TANAKA S, HAMAGUCHI H. Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP(BC)-PKP(DF) times [J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B2): 2925–2938. doi: 10.1029/96JB03187
    [27] ISHII M, DZIEWOŃSKI A M. The innermost inner core of the Earth: evidence for a change in anisotropic behavior at the radius of about 300 km [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(22): 14026–14030. doi: 10.1073/pnas.172508499
    [28] SONG X D, RICHARDS P G. Seismological evidence for differential rotation of the Earth’s inner core [J]. Nature, 1996, 382(6588): 221–224. doi: 10.1038/382221a0
    [29] BADDING J V, HEMLEY R J, MAO H K, et al. High-pressure chemistry of hydrogen in metals: in situ study of iron hydride [J]. Science, 1991, 253(5018): 421–424. doi: 10.1126/science.253.5018.421
    [30] PÉPIN C M, DEWAELE A, GENESTE G, et al. New iron hydrides under high pressure [J]. Physical Review Letters, 2014, 113(26): 265504. doi: 10.1103/PhysRevLett.113.265504
    [31] LI Y G, VOČADLO L, SUN T, et al. The Earth’s core as a reservoir of water [J]. Nature Geoscience, 2020, 13(6): 453–458. doi: 10.1038/s41561-020-0578-1
    [32] YUAN L, STEINLE-NEUMANN G. Strong sequestration of hydrogen into the Earth’s core during planetary differentiation [J]. Geophysical Research Letters, 2020, 47(15): e2020GL088303. doi: 10.1029/2020GL088303
    [33] TAGAWA S, SAKAMOTO N, HIROSE K, et al. Experimental evidence for hydrogen incorporation into Earth’s core [J]. Nature Communications, 2021, 12(1): 2588. doi: 10.1038/s41467-021-22035-0
    [34] HE Y, KIM D Y, STRUZHKIN V V, et al. The stability of FeH x and hydrogen transport at Earth’s core mantle boundary [J]. Science Bulletin, 2023, 68(14): 1567–1573. doi: 10.1016/j.scib.2023.06.012
    [35] HE Y, SUN S C, KIM D Y, et al. Superionic iron alloys and their seismic velocities in Earth’s inner core [J]. Nature, 2022, 602(7896): 258–262. doi: 10.1038/s41586-021-04361-x
    [36] SUN S C, HE Y, YANG J Y, et al. Superionic effect and anisotropic texture in Earth’s inner core driven by geomagnetic field [J]. Nature Communications, 2023, 14(1): 1656. doi: 10.1038/s41467-023-37376-1
    [37] WANG W Z, LI Y G, BRODHOLT J P, et al. Strong shear softening induced by superionic hydrogen in Earth’s inner core [J]. Earth and Planetary Science Letters, 2021, 568: 117014. doi: 10.1016/j.jpgl.2021.117014
    [38] YANG H, DOU P X, XIAO T T, et al. The geophysical properties of FeH x phases under inner core conditions [J]. Geophysical Research Letters, 2023, 50(22): e2023GL104493. doi: 10.1029/2023GL104493
    [39] FUKAI Y, SUGIMOTO H. Diffusion of hydrogen in metals [J]. Advances in Physics, 1985, 34(2): 263–326. doi: 10.1080/00018738500101751
    [40] SHIBAZAKI Y, OHTANI E, FUKUI H, et al. Sound velocity measurements in dhcp-FeH up to 70 GPa with inelastic X-ray scattering: implications for the composition of the Earth’s core [J]. Earth and Planetary Science Letters, 2012, 313/314: 79–85. doi: 10.1016/j.jpgl.2011.11.002
    [41] MASHINO I, MIOZZI F, HIROSE K, et al. Melting experiments on the Fe-C binary system up to 255 GPa: constraints on the carbon content in the Earth’s core [J]. Earth and Planetary Science Letters, 2019, 515: 135–144. doi: 10.1016/j.jpgl.2019.03.020
    [42] OZAWA H, HIROSE K, TATENO S, et al. Phase transition boundary between B1 and B8 structures of FeO up to 210 GPa [J]. Physics of the Earth and Planetary Interiors, 2010, 179(3/4): 157–163. doi: 10.1016/j.pepi.2009.11.005
    [43] OISHI Y, KAMEI Y, AKIYAMA M, et al. Self-diffusion coefficient of lithium in lithium oxide [J]. Journal of Nuclear Materials, 1979, 87(2/3): 341–344. doi: 10.1016/0022-3115(79)90570-1
    [44] KARKI B B, STIXRUDE L, CLARK S J, et al. Structure and elasticity of MgO at high pressure [J]. American Mineralogist, 1997, 82(1/2): 51–60. doi: 10.2138/am-1997-1-207
    [45] KARKI B B, STIXRUDE L, WENTZCOVITCH R M. High-pressure elastic properties of major materials of Earth’s mantle from first principles [J]. Reviews of Geophysics, 2001, 39(4): 507–534. doi: 10.1029/2000RG000088
    [46] VOIGT W. Lehrbuch der kristallphysik [M]. Leipzig: Teubner Verlag, 1928.
    [47] REUSS A. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung fűr einkristalle [J]. Journal of Applied Mathematics and Mechanics, 1929, 9(1): 49–58. doi: 10.1002/zamm.19290090104
    [48] HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society: Section A, 1952, 65(5): 349–354.
    [49] ANDERSON D L. Theory of the Earth [M]. Boston: Blackwell Scientific Publications, 1989.
    [50] HULL S, FARLEY T W D, HAYES W, et al. The elastic properties of lithium oxide and their variation with temperature [J]. Journal of Nuclear Materials, 1988, 160(2/3): 125–134. doi: 10.1016/0022-3115(88)90039-6
    [51] HE Y, SUN S C, LI H P. Ab initio molecular dynamics investigation of the elastic properties of superionic Li2O under high temperature and pressure [J]. Physical Review B, 2021, 103(17): 174105. doi: 10.1103/PhysRevB.103.174105
    [52] MARTORELL B, VOČADLO L, BRODHOLT J, et al. Strong premelting effect in the elastic properties of hcp-Fe under inner-core conditions [J]. Science, 2013, 342(6157): 466–468. doi: 10.1126/science.1243651
    [53] 甘波, 李俊, 蒋刚, 等. Fe高压熔化线的实验研究进展 [J]. 高压物理学报, 2021, 35(6): 060101. doi: 10.11858/gywlxb.20210859

    GAN B, LI J, JIANG G, et al. A review of the experimental determination of the melting curve of iron at ultrahigh pressures [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 060101. doi: 10.11858/gywlxb.20210859
    [54] ANZELLINI S, DEWAELE A, MEZOUAR M, et al. Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction [J]. Science, 2013, 340(6131): 464–466. doi: 10.1126/science.1233514
    [55] LI J, WU Q, LI J B, et al. Shock melting curve of iron: a consensus on the temperature at the Earth’s inner core boundary [J]. Geophysical Research Letters, 2020, 47(15): e2020GL087758. doi: 10.1029/2020GL087758
    [56] HOU H Q, LIU J, ZHANG Y J, et al. Melting of iron explored by electrical resistance jump up to 135 GPa [J]. Geophysical Research Letters, 2021, 48(20): e2021GL095739. doi: 10.1029/2021GL095739
    [57] ZHANG Y J, WANG Y, HUANG Y Q, et al. Collective motion in hcp-Fe at Earth’s inner core conditions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(41): e2309952120.
    [58] BELONOSHKO A B, SIMAK S I, OLOVSSON W, et al. Elastic properties of body-centered cubic iron in Earth’s inner core [J]. Physical Review B, 2022, 105(18): L180102. doi: 10.1103/PhysRevB.105.L180102
    [59] WU Z Q, WANG W Z. Shear softening of Earth’s inner core as indicated by its high Poisson ratio and elastic anisotropy [J]. Fundamental Research. DOI: 10.1016/j.fmre.2022.08.010.
    [60] BELONOSHKO A B, SKORODUMOVA N V, DAVIS S, et al. Origin of the low rigidity of the Earth’s inner core [J]. Science, 2007, 316(5831): 1603–1605. doi: 10.1126/science.1141374
    [61] KARATO S I. Inner core anisotropy due to the magnetic field: induced preferred orientation of iron [J]. Science, 1993, 262(5140): 1708–1711. doi: 10.1126/science.262.5140.1708
    [62] YOSHIDA S, SUMITA I, KUMAZAWA M. Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy [J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B12): 28085–28103. doi: 10.1029/96JB02700
    [63] FROST D A, LASBLEIS M, CHANDLER B, et al. Dynamic history of the inner core constrained by seismic anisotropy [J]. Nature Geoscience, 2021, 14(7): 531–535. doi: 10.1038/s41561-021-00761-w
    [64] SINGH S C, TAYLOR M A J, MONTAGNER J P. On the presence of liquid in Earth’s inner core [J]. Science, 2000, 287(5462): 2471–2474. doi: 10.1126/science.287.5462.2471
    [65] 何宇, 孙士川, 徐云帆, 等. 地球内核各向异性结构成因: 矿物学模型和动力学机制 [J/OL]. 矿物岩石地球化学通报 (2023-09-28)[2024-01-09]. https://kns.cnki.net/kcms2/article/abstract?v=z5VdU6XQV3X2PXbTT1OgcuOSUGALw3UfEUzDIb8cGLjV1OFDYBL1x9lftDrN9bJg3zFaPXciDx4-jtQR4v9o1dgio2ra8UjlPAeskyFgNML5Wt6L8hM4_CvCzP0zQsJS-1kFXp9zKdE=&uniplatform=NZKPT&language=CHS. DOI: 10.19658/j.issn.1007-2802.2023.42.100.

    HE Y, SUN S C, XU Y F, et al. The origin of anisotropic structure of the Earth’s inner core from mineralogical model to dynamic mechanism [J/OL]. Bulletin of Mineralogy, Petrology and Geochemistry (2023-09-28)[2024-01-09]. https://kns.cnki.net/kcms2/article/abstract?v=z5VdU6XQV3X2PXbTT1OgcuOSUGALw3UfEUzDIb8cGLjV1OFDYBL1x9lftDrN9bJg3zFaPXciDx4-jtQR4v9o1dgio2ra8UjlPAeskyFgNML5Wt6L8hM4_CvCzP0zQsJS-1kFXp9zKdE=&uniplatform=NZKPT&language=CHS. DOI: 10.19658/j.issn.1007-2802.2023.42.100.
    [66] BRETT H, DEUSS A. Inner core anisotropy measured using new ultra-polar PKIKP paths [J]. Geophysical Journal International, 2020, 223(2): 1230–1246. doi: 10.1093/gji/ggaa348
    [67] SUN X L, SONG X D. The inner inner core of the Earth: texturing of iron crystals from three-dimensional seismic anisotropy [J]. Earth and Planetary Science Letters, 2008, 269(1/2): 56–65. doi: 10.1016/j.jpgl.2008.01.049
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  70
  • PDF下载量:  36
出版历程
  • 收稿日期:  2024-01-09
  • 修回日期:  2024-02-29
  • 网络出版日期:  2024-05-10
  • 刊出日期:  2024-06-03

目录

    /

    返回文章
    返回