含损伤的无机防弹玻璃的JH2本构模型

史刘彤 黄友奇 高玉波 贾哲 李志豪

史刘彤, 黄友奇, 高玉波, 贾哲, 李志豪. 含损伤的无机防弹玻璃的JH2本构模型[J]. 高压物理学报, 2024, 38(4): 044105. doi: 10.11858/gywlxb.20240704
引用本文: 史刘彤, 黄友奇, 高玉波, 贾哲, 李志豪. 含损伤的无机防弹玻璃的JH2本构模型[J]. 高压物理学报, 2024, 38(4): 044105. doi: 10.11858/gywlxb.20240704
SHI Liutong, HUANG Youqi, GAO Yubo, JIA Zhe, LI Zhihao. JH2 Constitutive Model of Inorganic Bulletproof Glass with Damage[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 044105. doi: 10.11858/gywlxb.20240704
Citation: SHI Liutong, HUANG Youqi, GAO Yubo, JIA Zhe, LI Zhihao. JH2 Constitutive Model of Inorganic Bulletproof Glass with Damage[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 044105. doi: 10.11858/gywlxb.20240704

含损伤的无机防弹玻璃的JH2本构模型

doi: 10.11858/gywlxb.20240704
基金项目: 国家自然科学基金(12172337);山西省基础研究计划(20210302123022);中北大学研究生科技立项(20231976)
详细信息
    作者简介:

    史刘彤(1999-),女,硕士研究生,主要从事防弹玻璃的本构关系及损伤机理研究. E-mail:1456185422@qq.com

    通讯作者:

    高玉波(1986-),男,博士,副教授,主要从事穿甲动力学、材料本构关系与损伤机理研究. E-mail:gaoyb@nuc.edu.cn

  • 中图分类号: O345; TB321

JH2 Constitutive Model of Inorganic Bulletproof Glass with Damage

  • 摘要: 防弹玻璃具有良好的抗冲击性能,能够抵御枪弹、爆炸碎片以及其他高速飞行物体的攻击性威胁,广泛应用于安全防护领域。为探究防弹玻璃的无机玻璃层在冲击加载下的动态力学性能及本构关系,首先,采用电子万能试验机和分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)试验装置,获得了不同应变率下材料的拉伸和压缩力学性能,结果表明,无机玻璃具有明显的应变率效应,材料强度随应变率的升高而增大。其次,借鉴土力学三轴围压试验,设计了适用于本研究的高强围压套筒,测试了完全损伤条件下玻璃颗粒的力学性能,发现其强度明显低于完整状态下无机玻璃的强度。最后,结合试验数据构建了含损伤无机玻璃的JH2本构模型,采用非线性有限元软件 LS-DYNA 模拟了材料在SHPB加载下的压缩过程,通过对比试验结果与模拟结果,验证了本构模型的有效性。

     

  • 图  准静态试验设置

    Figure  1.  Quasi-static test setup

    图  动态压缩试验装置

    Figure  2.  Setup of dynamic compression tests

    图  三轴围压试验装置

    Figure  3.  Triaxial confining pressure test device

    图  无机玻璃的拉伸应力-应变曲线

    Figure  4.  Tensile stress-strain curves of inorganic glass

    图  不同应变率下典型应力-应变曲线

    Figure  5.  Typical stress-strain curves at different strain rates

    图  三轴围压试验轴向应力-应变曲线

    Figure  6.  Axial stress-strain curves of triaxial confining pressure test

    图  无机玻璃的Hugoniot曲线

    Figure  7.  Hugoniot curve of inorganic glass

    图  应变率敏感系数C的拟合过程

    Figure  8.  Fitting process of strain rate sensitivity coefficient C

    图  材料完整强度模型的拟合曲线

    Figure  9.  Fitting curve of complete strength model of material

    图  10  无机玻璃颗粒的无量纲静水压力与无量纲强度的关系

    Figure  10.  Relation between dimensionless hydrostatic pressure and dimensionless strength for inorganic glass particles

    图  11  玻璃试样和SHPB的有限元模型

    Figure  11.  Glass specimen and finite element model of SHPB

    图  12  模拟得到的无机玻璃的失效历程

    Figure  12.  Failure process of inorganic glass obtained by simulation

    图  13  试验与数值模拟结果对比

    Figure  13.  Comparison of test and simulation results

    表  1  玻璃的基本力学性能参数

    Table  1.   Basic mechanical parameters of glass

    $ \overline{\rho} $/(kg∙m−3) Ep/GPa ν G/GPa K1/GPa
    2468 72 0.23 29.3 44.4
    下载: 导出CSV

    表  2  准静态和动态压缩试验得到的参考参数

    Table  2.   Parameters obtained by quasi-static and dynamic compression test

    Test ${ \dot{{ \varepsilon }}}\text{/}{\text{s}}^{{-1}} $ σ/GPa p/GPa $\sigma^{*}$ $p^{*}$
    Quasi-static compression 10−4 0.760 0.253 0.127 0.0719
    SHPB 420 0.930 0.310 0.156 0.0881
    下载: 导出CSV

    表  3  根据动态压缩试验数据拟合得到的完整强度参数

    Table  3.   Complete strength parameters obtained by dynamic compression test data fitting

    No. ${ \dot{{ \varepsilon }}}^{*} $ σ/GPa $ {\sigma}^{{*}} $ $ p^{{*}} $ X Y
    1 230 0.864 0.1447 0.0818 −2.0393 −1.9576
    2 280 0.893 0.1496 0.0846 −2.0184 −1.9255
    3 350 0.917 0.1536 0.0868 −2.0015 −1.9000
    4 420 0.933 0.1563 0.0884 −1.9903 −1.8835
    下载: 导出CSV

    表  4  三轴围压试验数据

    Table  4.   Triaxial confining pressure test data

    Particle size/mm $ {\sigma _{\textit{zz}}} $/GPa $ {{\varepsilon} _{\text{c}}}/10^{-3} $ $ {E_{\text{c}}} $/GPa $ {\sigma _{{\theta \theta }}} $/GPa p/GPa $ {\sigma _{\rm f}} $/GPa $ {p ^*} $ $ \sigma_{\mathrm{f}}^* $
    0–0.1 0.533 7.00 192 0.089 0.237 0.222 0.067 0.037
    0.3–0.5 0.408 4.75 192 0.058 0.175 0.175 0.050 0.029
    下载: 导出CSV

    表  5  钢杆和垫块的线弹性材料参数

    Table  5.   Linear elastic material property parameters of steel bar and block

    ρs/(kg∙m−3) Ep/GPa ν
    7850 200 0.30
    下载: 导出CSV

    表  6  试验拟合得到的玻璃材料的JH2本构模型参数

    Table  6.   Parameters of JH2 constitutive model of glass material fitted by the test

    ρ/(kg∙m−3) G/GPa K1/GPa K2/GPa K3/GPa T/GPa σHEL/GPa pHEL/GPa
    246829.344.4−1452440.077.53.52
    ABCMND1D2Sfmax
    3.100.360.002560.831.510.0050.850.2
    下载: 导出CSV

    表  7  数值模拟和试验获得的不同应变率下的单轴压缩强度

    Table  7.   Uniaxial compression strength at different strain rates obtained by simulation and test

    ${ \dot{{ \varepsilon }}}\text{/}{\text{s}}^{{-1}} $ Uniaxial compression strength/MPa Error/%
    Test Simulation
    220 874 837 4.2
    350 917 885 3.5
    425 939 911 3.0
    下载: 导出CSV
  • [1] 刘志海. 夹层玻璃的发展现状及趋势 [J]. 中国建材, 2003(9): 64–66.

    LIU Z H. Current situation and future trends of laminated glass [J]. China Building Materials, 2003(9): 64–66.
    [2] SHIM G I, KIM S H, EOM H W, et al. Improvement in ballistic impact resistance of a transparent bulletproof material laminated with strengthened soda-lime silicate glass [J]. Composites Part B: Engineering, 2015, 77: 169–178. doi: 10.1016/j.compositesb.2015.03.035
    [3] SHIM G I, EOM H W, KIM S H, et al. Fabrication of lightweight and thin bulletproof windows using borosilicate glass strengthened by ion exchange [J]. Composites Part B: Engineering, 2015, 69: 44–49. doi: 10.1016/j.compositesb.2014.09.023
    [4] ZHANG X H, HAO H, MA G W. Dynamic material model of annealed soda-lime glass [J]. International Journal of Impact Engineering, 2015, 77: 108−119.
    [5] 葛彦鑫. Al2O3/SiC复相陶瓷冲击失效机理研究 [D]. 太原: 中北大学, 2022: 52−54.

    GE Y X. Study on impact failure mechanism of Al2O3/SiC composite [D]. Taiyuan: North University of China, 2022: 52−54.
    [6] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984.
    [7] HOLMQUIST T J, JOHNSON G R, GRADY D E, et al. High strain rate properties and constitutive modeling of glass [C]//The 15th International Symposium on Ballistics. Jerusalem, Isreal, 1995: T14929.
    [8] ALEXANDER C S, CHHABILDAS L C, TEMPLETON D W. The hugoniot elastic limit of soda-lime glass [J]. AIP Conference Proceedings, 2007, 955(1): 733–738.
    [9] RENGANATHAN P, DUFFY T S, GUPTA Y M. Hugoniot states and optical response of soda lime glass shock compressed to 120 GPa [J]. Journal of Applied Physics, 2020, 127(20): 205901.
    [10] 杨震琦, 庞宝君, 王立闻, 等. JH-2模型及其在Al2O3陶瓷低速撞击数值模拟中的应用 [J]. 爆炸与冲击, 2010, 30(5): 463–471.

    YANG Z Q, PANG B J, WANG L W, et al. JH-2 model and its application to numerical simulation on Al2O3 ceramic under low-velocity impact [J]. Explosion and Shock Waves, 2010, 30(5): 463–471.
    [11] 高玉波. TiB2-B4C复合材料动态力学性能及抗侵彻机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016: 29−42.

    GAO Y B. Study of dynamic mechanical property and anti-penetration mechanism of TiB2-B4C composites [D]. Harbin: Harbin Institute of Technology, 2016: 29−42.
    [12] MEYER L W, FABER I. Investigations on granular ceramics and ceramic powder [J]. Journal De Physique Ⅳ, 1997, 7: C3-565–C3-570.
    [13] ASTM. Standard test method for tensile strength estimate by disc compression of manufactured graphite: D8289-2020 [S]. 2020.
    [14] 贾哲. 弹道冲击下防弹玻璃的损伤机理和抗侵彻性能研究 [D]. 太原: 中北大学, 2023: 12−36.

    JIA Z. Study on damage mechanism and anti-penetration performance of bulletproof glass under ballistic impact [D]. Taiyuan: North University of China, 2023: 12−36.
    [15] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures [C]//The 7th International Symposium on Ballistics. The Hague, The Netherlands, 1983.
    [16] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
    [17] HOLMQUIST T J, JOHNSON G R, GERLACH C A. An improved computational constitutive model for glass [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2085): 20160182. doi: 10.1098/rsta.2016.0182
    [18] OSNES K, HOLMEN J K, GRUE T, et al. Perforation of laminated glass: an experimental and numerical study [J]. International Journal of Impact Engineering, 2021, 156: 103922. doi: 10.1016/j.ijimpeng.2021.103922
    [19] GRADY D E, CHHABILDAS L C. Shock-wave properties of soda-lime glass [R]. Albuquerque: Sandia National Laboratories, 1996: 4−6.
    [20] DANDEKAR D P. Index of refraction and mechanical behavior of soda lime glass under shock and release wave propagations [J]. Journal of Applied Physics, 1998, 84(12): 6614−6622.
    [21] SIMHA C H M, GUPTA Y M. Time-dependent inelastic deformation of shocked soda-lime glass [J]. Journal of Applied Physics, 2004, 96(4): 1880−1890.
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  51
  • PDF下载量:  24
出版历程
  • 收稿日期:  2024-01-03
  • 修回日期:  2024-02-04
  • 录用日期:  2024-03-15
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回