不同应变率下高强钢的拉伸行为及力学性能分析

洛绒邓珠 刘潇如 杨佳 肖礼康 郭亮 魏占涛 周章洋 易早 刘艺 房雷鸣 熊政伟

洛绒邓珠, 刘潇如, 杨佳, 肖礼康, 郭亮, 魏占涛, 周章洋, 易早, 刘艺, 房雷鸣, 熊政伟. 不同应变率下高强钢的拉伸行为及力学性能分析[J]. 高压物理学报, 2024, 38(3): 030104. doi: 10.11858/gywlxb.20240702
引用本文: 洛绒邓珠, 刘潇如, 杨佳, 肖礼康, 郭亮, 魏占涛, 周章洋, 易早, 刘艺, 房雷鸣, 熊政伟. 不同应变率下高强钢的拉伸行为及力学性能分析[J]. 高压物理学报, 2024, 38(3): 030104. doi: 10.11858/gywlxb.20240702
YANG Shuqi, ZHANG Xu, PENG Wenyang, SHU Junxiang, LIU Shouxian, QIN Shuang, ZHONG Bin. PDV Technology of Shock Initiation Reaction Process of Insensitive Explosive[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 023402. doi: 10.11858/gywlxb.20190856
Citation: LUORONG Dengzhu, LIU Xiaoru, YANG Jia, XIAO Likang, GUO Liang, WEI Zhantao, ZHOU Zhangyang, YI Zao, LIU Yi, FANG Leiming, XIONG Zhengwei. Tensile Behavior and Mechanical Performance Analysis of High-Strength Steels at Varying Strain Rates[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030104. doi: 10.11858/gywlxb.20240702

不同应变率下高强钢的拉伸行为及力学性能分析

doi: 10.11858/gywlxb.20240702
基金项目: 国家自然科学基金(U2230119);四川省自然科学基金(2022NSFSC0333);四川省杰出青年基金(22JCQN0005);2022年中央引导地方科技发展项目(2022ZYDF073)
详细信息
    作者简介:

    洛绒邓珠(1998-),男,硕士研究生,主要从事金属材料的结构分析与性能研究.E-mail:2926740401@qq.com

    通讯作者:

    熊政伟(1984-),男,博士,教授,主要从事高压物理研究. E-mail:zw-xiong@swust.edu.cn

  • 中图分类号: O344.3

Tensile Behavior and Mechanical Performance Analysis of High-Strength Steels at Varying Strain Rates

  • 摘要: 高强钢因强度高、塑性好、耐腐蚀性优异而得到广泛应用。然而,高强钢具有显著的应变率敏感性。为此,针对2种高强钢(Ultrafort 401和Ferrium S53钢),开展了不同应变率下(10−4~103 s−1)的拉伸试验,获得了屈服强度、抗拉强度、硬化指数等性能参量,并深入分析了其随应变率变化的规律。不同应变率下,Ferrium S53钢的拉伸性能始终优于Ultrafort 401钢,但两者却表现出不同的变化趋势。随着应变率的增加,Ultrafort 401钢的屈服强度和抗拉强度均增大,而Ferrium S53钢的屈服强度增大,抗拉强度先减小后增大。结合微观结构表征发现,Ferrium S53钢所具有的较高的屈服强度与其初始晶粒尺寸更小有关,2种高强钢的抗拉强度随应变率增加所表现出的不同变化趋势则与应变硬化响应差异有关。随着应变率的升高,Ultrafort 401钢的韧窝尺寸增大,而Ferrium S53钢的韧窝尺寸先减小后增大,说明2种高强钢的应变硬化水平随着应变率升高而呈现不同的变化趋势。研究结果为高强钢在不同加载条件下的力学性能评估提供了科学依据,对高强钢的工程应用具有一定的指导意义。

     

  • 图  拉伸试样示意图

    Figure  1.  Schematic diagram of the specimens used for tensile tests

    图  初始态Ferrium S53和Ultrafort 401钢的反极图、晶界图、取向差角直方图和晶粒尺寸直方图

    Figure  2.  Inverse pole figure (IPF), grain boundary diagrams, the distribution of misorientation angle and grain size of Ferrium S53 and Ultrafort 401 steel samples before deformation

    图  不同应变率下Ferrium S53和Ultrafort 401钢的工程应力-应变曲线

    Figure  3.  Engineering stress-strain curves at different strain rates for Ferrium S53 and Ultrafort 401 steels

    图  不同应变率下Ferrium S53和Ultrafort 401钢的屈服强度和抗拉强度

    Figure  4.  Tensile and yield strength curves at different strain rates for Ferrium S53 and Ultrafort 401 steels

    图  不同应变率下Ferrium S53和Ultrafort 401钢的均匀延伸率和屈强比

    Figure  5.  Uniform elongation and yield ratio curves at different strain rates for Ferrium S53 and Ultrafort 401 steels

    图  不同应变率下Ferrium S53钢和Ultrafort 401钢的硬化指数

    Figure  6.  Hardening indexes of Ferrium S53 and Ultrafort 401 steels at different strain rates

    图  不同应变率下Ferrium S53钢的断口形貌及对应的韧窝尺寸分布

    Figure  7.  Fracture morphology and distribution of corresponding dimple size at different strain rates for Ferrium S53 steel

    图  不同应变率下Ultrafort 401钢的断口形貌及对应的韧窝尺寸分布

    Figure  8.  Fracture morphology and distribution of corresponding dimple size at different strain rates for Ultrafort 401 steels

    图  不同应变率下2种高强钢的强塑性关系(虚线箭头表示应变率增大方向)

    Figure  9.  Relationships of strength-plasticity behavior of two high-strength steels at varying strain rates (The dashed arrows show the direction of increased strain rate)

    表  1  Ferrium S53和Ultrafort 401钢的元素组成

    Table  1.   Elemental composition of Ferrium S53 and Ultrafort 401 steels

    MaterialMass fraction/%
    CCrNiTiMoCoFe
    Ferrium S53 steel0.219.004.800.021.5013.0071.47
    Ultrafort 401 steel0.0212.008.200.802.005.3071.68
    下载: 导出CSV

    表  2  Ferrium S53和Ultrafort 401钢在不同应变率下的力学性能参量

    Table  2.   Mechanical parameters of Ferrium S53 and Ultrafort 401 steels at different strain rates

    Material ˙ε/s−1 Tensile strength/MPa Yield strength/MPa Uniform elongation/% Yield ratio Hardening index
    Ferrium
    S53 steel
    10−4 1920.58 900.75 7.43 0.47 0.38
    10−3 1907.41 908.91 7.25 0.48 0.33
    10−2 1895.57 910.44 7.36 0.48 0.30
    7×10−2 1821.34 918.18 7.64 0.50 0.25
    10 1956.13 1145.16 8.13 0.59 0.41
    103 2069.75 1333.62 9.47 0.64 0.46
    Ultrafort
    401 steel
    10−4 944.68 711.59 2.78 0.75 0.13
    10−3 945.57 724.65 2.74 0.77 0.14
    10−2 953.93 759.52 2.81 0.80 0.15
    7×10−2 967.97 777.67 3.24 0.80 0.17
    10 1013.09 853.76 2.99 0.84 0.25
    103 1106.12 958.74 2.93 0.87 0.35
    下载: 导出CSV
  • [1] JIAO Z B, LUAN J H, MILLER M K, et al. Precipitate transformation from NiAl-type to Ni2AlMn-type and its influence on the mechanical properties of high-strength steels [J]. Acta Materialia, 2016, 110: 31–43. doi: 10.1016/j.actamat.2016.03.024
    [2] YAN S, LIANG T S, CHEN J Q, et al. A novel Cu-Ni added medium Mn steel: precipitation of Cu-rich particles and austenite reversed transformation occurring simultaneously during ART annealing [J]. Materials Science and Engineering: A, 2019, 746: 73–81. doi: 10.1016/j.msea.2019.01.014
    [3] ZHOU B C, YANG T, ZHOU G, et al. Mechanisms for suppressing discontinuous precipitation and improving mechanical properties of NiAl-strengthened steels through nanoscale Cu partitioning [J]. Acta Materialia, 2021, 205: 116561. doi: 10.1016/j.actamat.2020.116561
    [4] LIU Z B, YANG Z, WANG X H, et al. Enhanced strength-ductility synergy in a new 2.2 GPa grade ultra-high strength stainless steel with balanced fracture toughness: elucidating the role of duplex aging treatment [J]. Journal of Alloys and Compounds, 2022, 928: 167135. doi: 10.1016/j.jallcom.2022.167135
    [5] WANG X, XU Y B, WANG Y, et al. Combined effect of Cu partitioning and nano-size precipitates on improving strength-ductility balance of Cu bearing Q&P steel [J]. Materials Characterization, 2022, 194: 112441. doi: 10.1016/j.matchar.2022.112441
    [6] 刘振宝, 梁剑雄, 杨哲, 等. 高强度不锈钢应用及研究进展 [J]. 中国冶金, 2022, 32(6): 42–53. doi: 10.13228/j.boyuan.issn1006-9356.20220264

    LIU Z B, LIANG J X, YANG Z, et al. Progress of application and research on high strength stainless steel [J]. China Metallurgy, 2022, 32(6): 42–53. doi: 10.13228/j.boyuan.issn1006-9356.20220264
    [7] 张超, 苏杰, 梁剑雄, 等. 超高强度不锈钢沉淀行为研究进展 [J]. 钢铁, 2018, 53(4): 48–61. doi: 10.13228/j.boyuan.issn0449-749x.20170452

    ZHANG C, SU J, LIANG J X, et al. Research development of precipitation behavior of ultra high strength stainless steels [J]. Iron & Steel, 2018, 53(4): 48–61. doi: 10.13228/j.boyuan.issn0449-749x.20170452
    [8] 吴昊. 2种合金钢动态性能与圆筒爆轰加载条件下破片特征关系研究 [D]. 北京: 北京理工大学, 2015.

    WU H. Study on the relations between the dynamic properties of two alloy steels and the fragmentation characteristics of exploded cylinders [D]. Beijing: Beijing Institute of Technology, 2015.
    [9] 刘振宝, 梁剑雄, 苏杰, 等. 高强度不锈钢的研究及发展现状 [J]. 金属学报, 2020, 56(4): 549–557. doi: 10.11900/0412.1961.2019.00453

    LIU Z B, LIANG J X, SU J, et al. Research and application progress in ultra-high strength stainless steel [J]. Acta Metallurgica Sinica, 2020, 56(4): 549–557. doi: 10.11900/0412.1961.2019.00453
    [10] SEO J Y, PARK S K, KWON H, et al. Influence of carbide modifications on the mechanical properties of ultra-high-strength stainless steels [J]. Metallurgical and Materials Transactions A, 2017, 48(10): 4477–4485. doi: 10.1007/s11661-017-4220-9
    [11] PIOSZAK G L, GANGLOFF R P. Hydrogen environment assisted cracking of modern ultra-high strength martensitic steels [J]. Metallurgical and Materials Transactions A, 2017, 48(9): 4025–4045. doi: 10.1007/s11661-017-4156-0
    [12] YANG Z, LIU Z B, LIANG J X, et al. Elucidating the role of secondary cryogenic treatment on mechanical properties of a martensitic ultra-high strength stainless steel [J]. Materials Characterization, 2021, 178: 111277. doi: 10.1016/j.matchar.2021.111277
    [13] ZHANG Y P, ZHAN D P, QI X W, et al. Effect of solid-solution temperature on the microstructure and properties of ultra-high-strength Ferrium S53® steel [J]. Materials Science and Engineering: A, 2018, 730: 41–49. doi: 10.1016/j.msea.2018.05.099
    [14] 苟曼曼, 白瑞敏, 孟利军. 应变速率对钛合金室温拉伸性能的影响 [J]. 湖南有色金属, 2020, 36(1): 52–54, 80. doi: 10.3969/j.issn.1003-5540.2020.01.016

    GOU M M, BAI R M, MENG L J. Effect of strain rate on tensile properties of titanium alloy at room temperature [J]. Hunan Nonferrous Metals, 2020, 36(1): 52–54, 80. doi: 10.3969/j.issn.1003-5540.2020.01.016
    [15] BACIU F, RUSU-CASANDRA A, PASTRAMĂ Ş D. Low strain rate testing of tensile properties of steel [J]. Materials Today: Proceedings, 2020, 32(2): 128–132. doi: 10.1016/j.matpr.2020.03.469
    [16] MANJOINE M J. Influence of rate of strain and temperature on yield stresses of mild steel [J]. Journal of Applied Mechanics, 1944, 2(1): A211–A218. doi: 10.1115/1.4009394
    [17] ZHANG H, LI P D, GONG X F, et al. Tensile properties, strain rate sensitivity and failure mechanism of single crystal superalloys CMSX-4 [J]. Materials Science and Engineering: A, 2020, 782: 139105. doi: 10.1016/j.msea.2020.139105
    [18] OGUNDARE O D, MOMOH I M, AKINRIBIDE O J, et al. Effect of strain rates on mild steel under tensile loading [J]. International Journal of Science and Technology, 2013, 2(8): 588–594.
    [19] MA X K, LI F G, CAO J, et al. Strain rate effects on tensile deformation behaviors of Ti-10V-2Fe-3Al alloy undergoing stress-induced martensitic transformation [J]. Materials Science and Engineering: A, 2018, 710: 1–9. doi: 10.1016/j.msea.2017.10.057
    [20] YANG H K, ZHANG Z J, TIAN Y Z, et al. Negative to positive transition of strain rate sensitivity in Fe-22Mn-0.6C-x(Al) twinning-induced plasticity steels [J]. Materials Science and Engineering: A, 2017, 690: 146–157. doi: 10.1016/j.msea.2017.02.014
    [21] QIAN L H, GUO P C, MENG J Y, et al. Unusual grain-size and strain-rate effects on the serrated flow in FeMnC twin-induced plasticity steels [J]. Journal of Materials Science, 2013, 48(4): 1669–1674. doi: 10.1007/s10853-012-6925-x
    [22] MOHAPATRA S, KUMAR S, DAS S, et al. Effect of strain rate on the microstructure evolution and tensile behavior of medium manganese steel [J]. Materials Letters, 2023, 330: 133243. doi: 10.1016/j.matlet.2022.133243
    [23] SHEN T, FAN C H, HU Z Y, et al. Effect of strain rate on microstructure and mechanical properties of spray-formed Al-Cu-Mg alloy [J]. Transactions of Nonferrous Metals Society of China, 2022, 32(4): 1096–1104. doi: 10.1016/S1003-6326(22)65879-5
    [24] ZHONG X T, HUANG L K, LIU F. Discontinuous dynamic recrystallization mechanism and twinning evolution during hot deformation of incoloy 825 [J]. Journal of Materials Engineering and Performance, 2020, 29(9): 6155–6169. doi: 10.1007/s11665-020-05093-1
    [25] ZHANG W W, YANG Y, TAN Y B, et al. Microstructure evolution and strengthening mechanisms of MP159 superalloy during room temperature rolling and cryorolling [J]. Journal of Alloys and Compounds, 2022, 908: 164667. doi: 10.1016/j.jallcom.2022.164667
    [26] CAI Y Q, TAN Y B, WANG L X, et al. Multiple strengthening mechanisms induced by nanotwins and stacking faults in CoNiCr-superalloy MP159 [J]. Materials Science and Engineering: A, 2022, 853: 143793. doi: 10.1016/j.msea.2022.143793
    [27] 李春光, 张伟, 刘立现, 等. 不同应变速率双相高强钢动态力学行为微观机理分析 [J]. 锻压技术, 2018, 43(6): 166–171. doi: 10.13330/j.issn.1000-3940.2018.06.032

    LI C G, ZHANG W, LIU L X, et al. Analysis on micro-mechanism of dynamic mechanical behavior for high-strength steel with dual-phase under different strain rates [J]. Forging & Stamping Technology, 2018, 43(6): 166–171. doi: 10.13330/j.issn.1000-3940.2018.06.032
    [28] WIESNER C S, MACGILLIVRAY H. Loading rate effects on tensile properties and fracture toughness of steel [M]//HIRSCH P B. Fracture, Plastic Flow and Structural Integrity in the Nuclear Industry. London: CRC Press, 2000.
    [29] ZHANG J Y, JIANG P, ZHU Z L, et al. Tensile properties and strain hardening mechanism of Cr-Mn-Si-Ni alloyed ultra-strength steel at different temperatures and strain rates [J]. Journal of Alloys and Compounds, 2020, 842: 155856. doi: 10.1016/j.jallcom.2020.155856
    [30] JIANG Z H, LIAN J S, BAUDELET B. A dislocation density approximation for the flow stress-grain size relation of polycrystals [J]. Acta Metallurgica et Materialia, 1995, 43(9): 3349–3360. doi: 10.1016/0956-7151(95)00031-P
    [31] 孙伶俐. 拉伸应变速率对316不锈钢微观组织演变及力学性能的影响 [D]. 郑州: 郑州大学, 2018.

    SUN L L. Microstructure evolution and mechanical properties of 316 stainless steel: strain rate effect [D]. Zhengzhou: Zhengzhou University, 2018.
    [32] 汪志福, 孔韦海. 应变速率对304奥氏体不锈钢应变硬化行为的影响 [J]. 压力容器, 2013, 30(7): 6–11. doi: 10.3969/j.issn.1001-4837.2013.07.002

    WANG Z F, KONG W H. Effect of strain rate on 304 austenitic stainless steel strain hardening behavior [J]. Pressure Vessel Technology, 2013, 30(7): 6–11. doi: 10.3969/j.issn.1001-4837.2013.07.002
    [33] 刘海娜, 梅运东, 刘领兵. 应变速率对低合金高强钢性能的影响 [J]. 锻压技术, 2023, 48(6): 253–257. doi: 10.13330/j.issn.1000-3940.2023.06.034

    LIU H N, MEI Y D, LIU L B. Influence of strain rate on properties for low alloy high strength steel [J]. Forging & Stamping Technology, 2023, 48(6): 253–257. doi: 10.13330/j.issn.1000-3940.2023.06.034
    [34] 胡泳. 正态分布 [J]. 商务周刊, 2009(24): 94.

    HU Y. Normal distribution [J]. Business Watch Magazine, 2009(24): 94.
    [35] CHEN M S, ZOU Z H, LIN Y C, et al. Microstructural evolution and grain refinement mechanisms of a Ni-based superalloy during a two-stage annealing treatment [J]. Materials Characterization, 2019, 151: 445–456. doi: 10.1016/j.matchar.2019.03.037
    [36] VAN SWYGENHOVEN H. Grain boundaries and dislocations [J]. Science, 2002, 296(5565): 66–67. doi: 10.1126/science.1071040
    [37] LIU Q, XIONG Z W, YANG J, et al. Deformation induced phase transition in brass under shock compression [J]. Materials Today Communications, 2023, 35: 106224. doi: 10.1016/j.mtcomm.2023.106224
    [38] VALIEV R. Nanostructuring of metals by severe plastic deformation for advanced properties [J]. Nature Materials, 2004, 3(8): 511–516. doi: 10.1038/nmat1180
    [39] LIU Q, FANG L M, XIONG Z W, et al. The response of dislocations, low angle grain boundaries and high angle grain boundaries at high strain rates [J]. Materials Science and Engineering: A, 2021, 822: 141704. doi: 10.1016/j.msea.2021.141704
    [40] VAUGHAN M W, SAMIMI P, GIBBONS S L, et al. Exploring performance limits of a new martensitic high strength steel by ausforming via equal channel angular pressing [J]. Scripta Materialia, 2020, 184: 63–69. doi: 10.1016/j.scriptamat.2020.03.011
    [41] FENG X C, LIU X Y, BAI S X, et al. Mechanical properties and deformation behaviour of TWIP steel at different strain rates [J]. Materials Science and Engineering: A, 2023, 879: 145182. doi: 10.1016/j.msea.2023.145182
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  540
  • HTML全文浏览量:  127
  • PDF下载量:  43
出版历程
  • 收稿日期:  2024-01-02
  • 修回日期:  2024-03-01
  • 网络出版日期:  2024-04-01
  • 刊出日期:  2024-06-03

目录

    /

    返回文章
    返回