HMX含量对PBT基推进剂撞击感度和非冲击点火反应特性的影响

杨年 马腾 过光飞 吴三震 夏语 黄寅生 刘大斌 徐森

杨年, 马腾, 过光飞, 吴三震, 夏语, 黄寅生, 刘大斌, 徐森. HMX含量对PBT基推进剂撞击感度和非冲击点火反应特性的影响[J]. 高压物理学报, 2024, 38(3): 035201. doi: 10.11858/gywlxb.20230824
引用本文: 杨年, 马腾, 过光飞, 吴三震, 夏语, 黄寅生, 刘大斌, 徐森. HMX含量对PBT基推进剂撞击感度和非冲击点火反应特性的影响[J]. 高压物理学报, 2024, 38(3): 035201. doi: 10.11858/gywlxb.20230824
YANG Nian, MA Teng, GUO Guangfei, WU Sanzhen, XIA Yu, HUANG Yinsheng, LIU Dabin, XU Sen. Influences of HMX Content on the Impact Sensitivity and Non-Shock Initiation Reaction Characteristics of PBT Based Propellants[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 035201. doi: 10.11858/gywlxb.20230824
Citation: YANG Nian, MA Teng, GUO Guangfei, WU Sanzhen, XIA Yu, HUANG Yinsheng, LIU Dabin, XU Sen. Influences of HMX Content on the Impact Sensitivity and Non-Shock Initiation Reaction Characteristics of PBT Based Propellants[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 035201. doi: 10.11858/gywlxb.20230824

HMX含量对PBT基推进剂撞击感度和非冲击点火反应特性的影响

doi: 10.11858/gywlxb.20230824
基金项目: 国家自然科学基金(12272184)
详细信息
    作者简介:

    杨 年(1994-),男,博士,主要从事含能材料反应机理研究. E-mail:youngnian@njust.edu.cn

    通讯作者:

    徐 森(1981-),男,博士,研究员,主要从事含能材料危险性分级与控制技术研究. E-mail:xusen@njust.edu.cn

  • 中图分类号: O381

Influences of HMX Content on the Impact Sensitivity and Non-Shock Initiation Reaction Characteristics of PBT Based Propellants

  • 摘要: 为了研究HMX的含量对PBT基推进剂撞击感度和非冲击点火反应特性的影响,开展了BAM落锤撞击感度试验、脆性试验和Susan试验。结果表明:随着HMX含量的增加,PBT基推进剂爆炸概率为50%时的特性落高(H50)减小,即推进剂的撞击感度随着HMX含量的增加而增大。对于HMX的质量分数分别为0、5%、10%和15%的PBT基推进剂,其临界撞击点火速度分别为168、147、136、131 m/s,临界撞击点火速度随HMX含量的增加而减小;在撞击速度为120~300 m/s的非冲击作用下,4种PBT基推进剂的反应等级为爆炸或部分爆轰,相同撞击速度下,HMX的质量分数为10%的PBT基推进剂相较于其他3种PBT基推进剂具有更剧烈的反应等级。

     

  • 图  试验装置示意图

    Figure  1.  Schematic diagram of the experimental setup

    图  4种PBT基推进剂点火的临界撞击速度

    Figure  2.  Critical impact ignition velocity of four kinds of PBT based propellants

    图  撞击前(a)和撞击50 μs后(b)PBT基推进剂图像(试样1)

    Figure  3.  Images of PBT based propellant before impact (a) and 50 μs after impact (b) (specimen 1)

    图  HMX的质量分数与PBT基推进剂的ΔE′的关系

    Figure  4.  Relationship between the mass fraction of HMX and ΔE′ of PBT based propellants

    图  不同撞击速度下4种PBT基推进剂的冲击波超压峰值

    Figure  5.  Shockwave overpressure peaks of four kinds of PBT based propellants after ignition with different impact velocities

    图  不同撞击速度下PBT基推进剂反应变化过程

    Figure  6.  Reaction changes of PBT based propellants after ignition with different impact velocities

    图  撞击后回收的钢体

    Figure  7.  Recovered steel body after impact

    图  撞击后钢体的剩余长度及动能

    Figure  8.  Residual lengths and kinetic energy of steel bodies after impact

    表  1  4种PBT基推进剂的组分

    Table  1.   Formulation of four kinds of PBT based propellants

    Specimenρ/(g·cm−3)wPBT/%wHMX/%wAP/%wAl/%wA3/%
    11.7819057195
    21.7819552195
    31.78191047195
    41.78191542195
    下载: 导出CSV

    表  2  4种PBT基推进剂的撞击感度测量结果

    Table  2.   Impact sensitivity test results of four kinds of PBT based propellants

    Specimen wHMX/% H50/cm E/J s/cm δ/%
    1 0 56.46 5.646 1.78
    2 5 50.83 5.083 2.03 11.08
    3 10 50.21 5.021 1.78 1.23
    4 15 49.82 4.982 1.69 0.78
    下载: 导出CSV
  • [1] MIYAZAKI T, KUBOTA N. Energetics of BAMO [J]. Propellants, Explosives, Pyrotechnics, 1992, 17(1): 5–9. doi: 10.1002/prep.19920170103
    [2] 翟进贤, 杨荣杰, 朱立勋, 等. BAMO-THF复合推进剂能量特性计算与分析 [J]. 含能材料, 2009, 17(1): 73–78. doi: 10.3969/j.issn.1006-9941.2009.01.018

    ZHAI J X, YANG R J, ZHU L X, et al. Calculation and analysis on energy characteristics of composite BAMO-THF propellants [J]. Chinese Journal of Energetic Materials, 2009, 17(1): 73–78. doi: 10.3969/j.issn.1006-9941.2009.01.018
    [3] 张杰凡, 徐森, 刘大斌, 等. PBT复合固体推进剂的热分解特性 [J]. 固体火箭技术, 2017, 40(6): 752–757. doi: 10.7673/j.issn.1006-2793.2017.06.014

    ZHANG J F, XU S, LIU D B, et al. Thermal decomposition characteristics of PBT composite solid propellant [J]. Journal of Solid Rocket Technology, 2017, 40(6): 752–757. doi: 10.7673/j.issn.1006-2793.2017.06.014
    [4] 李洋, 陶维斌, 李国平, 等. FT-IR法研究PBT粘合剂的固化反应动力学 [J]. 含能材料, 2018, 26(7): 572–577. doi: 10.11943/j.issn.1006-9941.2018.07.004

    LI Y, TAO W B, LI G P, et al. FT-IR studies on the curing reaction kinetics of PBT binder [J]. Chinese Journal of Energetic Materials, 2018, 26(7): 572–577. doi: 10.11943/j.issn.1006-9941.2018.07.004
    [5] 李洋, 姜磊, 尹必文, 等. PBT基钝感低特征信号推进剂的力学性能优化研究 [J]. 固体火箭技术, 2021, 44(4): 479–485. doi: 10.7673/j.issn.1006⁃2793.2021.04.009

    LI Y, JIANG L, YIN B W, et al. Research on mechanical properties optimization of PBT-based insensitive low signature solid propellant [J]. Journal of Solid Rocket Technology, 2021, 44(4): 479–485. doi: 10.7673/j.issn.1006⁃2793.2021.04.009
    [6] DENG S W, WANG S X, ZHOU H W, et al. Molecular dynamics simulation of molecular network structure and mechanical properties of polymer matrix in PBT propellant [J]. Materials Today Communications, 2023, 35: 105723. doi: 10.1016/j.mtcomm.2023.105723
    [7] PRESTON D N, BROWN G W, TAPPAN B C, et al. Drop weight impact measurements of HE sensitivity: modified detection methods [J]. Journal of Physics: Conference Series, 2014, 500(18): 182033. doi: 10.1088/1742-6596/500/18/182033
    [8] YANG N, MA T, LIU J P, et al. Influences of HMX contents on potential reaction violence and fragmentation degree of PBT-propellants after impact load [J]. AIP Advances, 2022, 12(8): 085202. doi: 10.1063/5.0099253
    [9] WALLACE I G. Spigot intrusion [C]//Proceedings of 26th Department of Defense Explosives Safety Seminar. Miami, USA, 1994.
    [10] CHIDESTER S K, TARVER C M, GARZA R. Low amplitude impact testing and analysis of pristine and aged solid high explosives: UCRL-JC-127963 [R]. Livermore, USA: Lawrence Livermore National Laboratory, 1998.
    [11] KIM H S, PARK B S. Characteristics of the insensitive pressed plastic bonded explosive, DXD-59 [J]. Propellants, Explosive, Pyrotechnics, 1999, 24(4): 217–220. doi: 10.1002/(SICI)1521-4087(199908)24:4<217::AID-PREP217>3.0.CO;2-A
    [12] 高大元, 郑保辉, 黄亨建, 等. 高聚物添加剂对B炸药撞击感度和作功能力的影响 [J]. 含能材料, 2017, 25(4): 326–332. doi: 10.11943/j.issn.1006-9941.2017.04.010

    GAO D Y, ZHENG B H, HUANG H J, et al. Effect of polymer additives on impact sensitivity and power of composition B [J]. Chinese Journal of Energetic Materials, 2017, 25(4): 326–332. doi: 10.11943/j.issn.1006-9941.2017.04.010
    [13] 阮庆云, 陈启珍. 评价炸药安全性能的苏珊试验 [J]. 爆炸与冲击, 1989, 9(1): 68–72.

    RUAN Q Y, CHEN Q Z. Safety evaluation of explosives by Susan test [J]. Explosion and Shock Waves, 1989, 9(1): 68–72.
    [14] 代晓淦, 韩敦信, 向永, 等. 苏珊试验中弹体形变的测量和模拟计算 [J]. 含能材料, 2004, 12(4): 235–238. doi: 10.3969/j.issn.1006-9941.2004.04.010

    DAI X G, HAN D X, XIANG Y, et al. The measurement and numerical simulation of the projectile deformation in Susan test [J]. Chinese Journal of Energetic Materials, 2004, 12(4): 235–238. doi: 10.3969/j.issn.1006-9941.2004.04.010
    [15] HUMPHREY J R. Safety handling characteristics of LX-04-1: UCRL-ID-124086 [R]. Livermore, USA: Lawrence Livermore National Laboratory, 1996.
    [16] WESTON A M, GREEN L G. Data analysis of the reaction behavior of explosive materials subjected to Susan test impacts: NSA-31-008091 [R]. Berkeley, CA, USA: Brobeck and Associates, 1970.
    [17] 周小清, 马卿, 张晓玉, 等. 5,5′-肼基-双四唑的合成与性能 [J]. 含能材料, 2011, 19(3): 361–362. doi: 10.3969/j.issn.1006-9941.2011.03.025

    ZHOU X Q, MA Q, ZHANG X Y, et al. Synthesis and properties of 5,5′-hydrazinebistetrazole [J]. Chinese Journal of Energetic Materials, 2011, 19(3): 361–362. doi: 10.3969/j.issn.1006-9941.2011.03.025
    [18] 王帜, 张文全, 王康才, 等. 3,5-二氨基-2,6-二硝基吡嗪-1-氧化物合成及性能 [J]. 含能材料, 2016, 24(8): 820–824. doi: 10.11943/j.issn.1006-9941.2016.08.016

    WANG Z, ZHANG W Q, WANG K C, et al. Synthesis and property of 3,5-diamino-2,6-dinitropyrazine-1-oxide [J]. Chinese Journal of Energetic Materials, 2016, 24(8): 820–824. doi: 10.11943/j.issn.1006-9941.2016.08.016
    [19] 潘鹏阳, 王霆威, 张祺, 等. 1,2-二(3,3′-二硝氨基-1H-1,2,4-三唑-5-基)乙烷及其1,3-丙二铵盐的合成、晶体和性能 [J]. 含能材料, 2021, 29(8): 732–738. doi: 10.11943/CJEM2021092

    PAN P Y, WANG T W, ZHANG Q, et al. Synthesis, crystal and properties of 1,2-bis(3,3′-dinitroamine-1H-1,2,4-triazol-5-yl)ethane and its 1,3-propanediamine salt [J]. Chinese Journal of Energetic Materials, 2021, 29(8): 732–738. doi: 10.11943/CJEM2021092
    [20] ATWOOD A I, FORD K P, BUI D T, et al. Assessment of mechanically induced damage in solid energetic materials [J]. International Journal of Energetic Materials and Chemical Propulsion, 2009, 8(5): 391–410. doi: 10.1615/IntJEnergeticMaterialsChemProp.v8.i5.20
    [21] ATWOOD A I, FORD K P, GENNRICH M T, et al. Melt cast explosive friability studies [J]. International Journal of Energetic Materials and Chemical Propulsion, 2012, 11(6): 537–547. doi: 10.1615/IntJEnergeticMaterialsChemProp.2013007306
    [22] ATWOOD A I, PURIFOY I, WHEELER C J, et al. LX-10 explosive damage studies: 201516 [R]. China Lake, USA: Naval Air Warfare Center, Weapons Division, 2015: 133–267.
    [23] LI Y B, ZHENG X. Influence of crystal characteristics on reaction for HMX-based pressed PBXs in the Susan impact test [J]. Science and Technology of Energetic Materials, 2016, 77(1/2): 34–39.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  24
  • PDF下载量:  21
出版历程
  • 收稿日期:  2023-12-20
  • 修回日期:  2024-03-17
  • 网络出版日期:  2024-05-25
  • 刊出日期:  2024-06-03

目录

    /

    返回文章
    返回