HfZrTiTaNb系高熵合金的冲击反应释能定量确定

郭孜涵 陈闯 涂益良 唐恩凌

郭孜涵, 陈闯, 涂益良, 唐恩凌. HfZrTiTaNb系高熵合金的冲击反应释能定量确定[J]. 高压物理学报, 2024, 38(1): 014103. doi: 10.11858/gywlxb.20230817
引用本文: 郭孜涵, 陈闯, 涂益良, 唐恩凌. HfZrTiTaNb系高熵合金的冲击反应释能定量确定[J]. 高压物理学报, 2024, 38(1): 014103. doi: 10.11858/gywlxb.20230817
GUO Zihan, CHEN Chuang, TU Yiliang, TANG Enling. Quantitative Determination of Impact Reaction Energy Release for HfZrTiTaNb Based High-Entropy Alloys[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014103. doi: 10.11858/gywlxb.20230817
Citation: GUO Zihan, CHEN Chuang, TU Yiliang, TANG Enling. Quantitative Determination of Impact Reaction Energy Release for HfZrTiTaNb Based High-Entropy Alloys[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014103. doi: 10.11858/gywlxb.20230817

HfZrTiTaNb系高熵合金的冲击反应释能定量确定

doi: 10.11858/gywlxb.20230817
基金项目: 国家自然科学基金(12102272)
详细信息
    作者简介:

    郭孜涵(2001-),女,硕士研究生,主要从事冲击动力学研究. E-mail:guozihan1301@163.com

    通讯作者:

    陈 闯(1987-),男,博士,教授,主要从事爆炸与冲击动力学研究. E-mail:chenchuang517@126.com

  • 中图分类号: O382

Quantitative Determination of Impact Reaction Energy Release for HfZrTiTaNb Based High-Entropy Alloys

  • 摘要: 作为一种新型含能材料,高熵合金在高速冲击过程中会释放大量能量,具有重要的应用价值。采用二级轻气炮系统加载真空环境下的HfZrTiTaNb系高熵合金弹丸,对轴承钢进行了冲击实验,测量了闪光辐射温度、气体超压、火焰传播速度和容器壁温升等响应参数的演化过程,分析了高熵合金弹丸撞击靶板过程中的能量流向,定量计算了高熵合金在密闭容器内冲击反应的混合气体焓、闪光辐射能、容器壁的吸收能、喷出气体焓以及撞击靶板产生的变形能,得到了不同元素及其含量对高熵合金释能量的影响。结果表明,高熵合金弹丸冲击反应释放的能量主要被准密闭容器壁吸收。随着Cu或Al含量的增加,HfZrTiTaNb系高熵合金的单位质量释能量增加。在相近的撞击速度下,含Cu高熵合金的单位质量释能量比含Al高熵合金大。

     

  • 图  准密闭容器实验系统中的能量分布

    Figure  1.  Energy distribution in a quasi-closed container experiment system

    图  能量分配关系

    Figure  2.  Energy allocation relationship

    图  高熵合金弹丸冲击反应释能实验加载与测试系统

    Figure  3.  Experimental loading and testing system of high-entropy alloys projectile impact reaction energy release

    图  实验设备

    Figure  4.  Experimental equipment

    图  实验中光纤高温计测试的原始电压信号

    Figure  5.  Original voltage signals tested by the fiber pyrometer in the experiments

    图  实验中光纤高温计测试的闪光辐射强度时程曲线

    Figure  6.  Time-history curves of flash radiation intensity measured by fiber pyrometer in the experiments

    图  准密闭容器中的超压和闪光辐射温度时程曲线

    Figure  7.  Time-history curves of overpressure and flash radiation temperature in the quasi-closed container

    图  实验1和实验5闪光辐射能量时程曲线

    Figure  8.  Time history curves of flash radiation energy of experiment 1 and experiment 5

    图  准密闭容器的观测区域和红外视图

    Figure  9.  Observation area and infrared view of quasi-closed container

    图  10  准密闭容器的外壁温度时程曲线和典型时刻的红外视图

    Figure  10.  Temperature time history curve of the outer wall of quasi-closed container and the infrared view at typical moments

    图  11  准密闭容器内的反应产物流动(实验1:HfZrTiTaNbCu0.2弹丸)

    Figure  11.  Flow of reaction products in the quasi-closed container (Experiment 1: HfZrTiTaNbCu0.2 projectile)

    图  12  准密闭容器内的反应产物流动(实验2:HfZrTiTaNbCu0.8弹丸)

    Figure  12.  Flow of reaction products in the quasi-closed container (Experiment 2: HfZrTiTaNbCu0.8 projectile)

    图  13  准密闭容器内的反应产物流动(实验3:HfZrTiTaNbAl0.2弹丸)

    Figure  13.  Flow of reaction products in the quasi-closed container (Experiment 3: HfZrTiTaNbAl0.2 projectile)

    图  14  准密闭容器内的反应产物流动(实验4:HfZrTiTaNbAl0.8弹丸)

    Figure  14.  Flow of reaction products in the quasi-closed container (Experiment 4: HfZrTiTaNbAl0.8 projectile)

    图  15  准密闭容器内的反应产物流动(实验5:HfZrTiTaNbAl0.8弹丸)

    Figure  15.  Flow of reaction products in the quasi-closed container (Experiment 5: HfZrTiTaNbAl0.8 projectile)

    图  16  数值模拟网格模型

    Figure  16.  Grid model of numerical simulation

    图  17  不同时刻准密闭容器内的数值模拟温度云图

    Figure  17.  Numerical simulation of temperature cloud in the quasi-closed container at different moments

    图  18  容器内气体温度及喷出气体质量的时程曲线

    Figure  18.  Time history curve of the gas temperature and the ejected gas mass in the container

    图  19  弹丸撞击靶板形成的弹坑及其剖面示意图

    Figure  19.  Craters formed by the impact of projectile on the target plate and their cross-sections

    图  20  不同原子的半径

    Figure  20.  Radius of different atoms

    表  1  实验基本参数

    Table  1.   Basic parameters of the experiment

    No. Specimen Size/(mm×mm) Mass/g Impact velocity/(km·s−1) Density/(g·cm−3)
    1 HfZrTiTaNbCu0.2 $\varnothing $4.63×4.68 0.786 1.35 9.98
    2 HfZrTiTaNbCu0.8 $\varnothing $4.96×4.69 0.918 1.30 10.13
    3 HfZrTiTaNbAl0.2 $\varnothing $4.95×4.83 0.899 1.31 9.68
    4 HfZrTiTaNbAl0.8 $\varnothing $4.81×5.15 0.853 1.57 9.12
    5 HfZrTiTaNbAl0.8 $\varnothing $4.76×5.11 0.832 1.59 9.15
    下载: 导出CSV

    表  2  瞬态光纤高温计各通道的标定数据

    Table  2.   Calibration data for each channel of the transient fiber pyrometer

    Channel Wave length/nm Impedance/kΩ Voltage/V Nr/(μW·cm−2·nm−1)
    1 400 10 2.934 281.7
    2 500 10 4.400 235.5
    3 600 1 0.880 347.1
    4 700 1 6.046 280.7
    下载: 导出CSV

    表  3  实验中的超压和闪光辐射温度峰值

    Table  3.   Peak of overpressure and flash radiation temperature in the experiment

    No. Specimen Overpressure/MPa Temperature/K
    1 HfZrTiTaNbCu0.2 0.22 1260
    2 HfZrTiTaNbCu0.8 0.24 1370
    3 HfZrTiTaNbAl0.2 0.21 1120
    4 HfZrTiTaNbAl0.8 0.20 1228
    5 HfZrTiTaNbAl0.8 0.20 1281
    下载: 导出CSV

    表  4  冲击反应释能结果

    Table  4.   Impact reaction energy release results

    No. Specimen Impact velocity/
    (km·s−1)
    Mass/g Energy release/kJ Energy release per
    unit mass/(kJ·g−1)
    1 HfZrTiTaNbCu0.2 1.35 0.786 1.32 1.68
    2 HfZrTiTaNbCu0.8 1.30 0.918 1.76 1.92
    3 HfZrTiTaNbAl0.2 1.31 0.899 0.88 0.98
    4 HfZrTiTaNbAl0.8 1.57 0.853 1.19 1.40
    5 HfZrTiTaNbAl0.8 1.59 0.832 1.21 1.45
    下载: 导出CSV

    表  5  HfZrTiTaNb系高熵合金的原子尺寸差

    Table  5.   Atomic size difference of HfZrTiTaNb based high-entropy alloys

    xδ/%
    HfZrTiTaNbCuxHfZrTiTaNbAlx
    0.24.924.84
    0.86.736.37
    下载: 导出CSV
  • [1] 刘丘林, 刘允中, 王艳群. 高熵合金的研究现状和应用前景 [J]. 粉末冶金工业, 2017, 27(6): 64–69. doi: 10.13228/j.boyuan.issn1006-6543.20160115

    LIU Q L, LIU Y Z, WANG Y Q. Research status and application prospect of high-entropy alloy [J]. Powder Metallurgy Industry, 2017, 27(6): 64–69. doi: 10.13228/j.boyuan.issn1006-6543.20160115
    [2] ZHANG W R, LIAW P K, ZHANG Y. Science and technology in high-entropy alloys [J]. Science China Materials, 2018, 61(1): 2–22. doi: 10.1007/s40843-017-9195-8
    [3] ZHANG Z R, ZHANG H, TANG Y, et al. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53 [J]. Materials & Design, 2017, 133: 435–443. doi: 10.1016/j.matdes.2017.08.022
    [4] GEANTĂ V, VOICULESCU I, STEFĂNOIU R, et al. Dynamic impact behaviour of high entropy alloys used in the military domain [J]. IOP Conference Series: Materials Science and Engineering, 2018, 374: 012041. doi: 10.1088/1757-899X/374/1/012041
    [5] 王睿鑫. NbZrTiTa高熵合金的组织结构演变及结构释能特性研究 [D]. 长沙: 国防科技大学, 2018.

    WANG R X. Microstructure evolution and energetic structural properties of NbZrTiTa high-entropy alloy [D]. Changsha: National University of Defense Technology, 2018.
    [6] REN K R, LIU H Y, CHEN R, et al. Compression properties and impact energy release characteristics of TiZrNbV high-entropy alloy [J]. Materials Science and Engineering: A, 2021, 827: 142074. doi: 10.1016/j.msea.2021.142074
    [7] MA Y S, ZHOU L, ZHANG K C, et al. Effects of cerium doping on the mechanical properties and energy-releasing behavior of high-entropy alloys [J]. Materials, 2022, 15(20): 7332. doi: 10.3390/ma15207332
    [8] CHEN C, GAO R K, GUO K, et al. Quantitative determination of impact release energy for TiZrHfX0.3 multicomponent materials in vacuum environment [J]. International Communications in Heat and Mass Transfer, 2022, 133: 105958. doi: 10.1016/j.icheatmasstransfer.2022.105958
    [9] TANG E L, WANG Q C, CHEN C, et al. Quantitative reactive release energy models of Al/Teflon material during high velocity impact [J]. International Journal of Energy Research, 2022, 46(15): 23069–23082. doi: 10.1002/er.8606
    [10] 张宝平, 张庆明, 黄风雷. 爆轰物理学 [M]. 北京: 兵器工业出版社, 2009.

    ZHANG B P, ZHANG Q M, HUANG F L. Detonation physics [M]. Beijing: Weapon Industry Press, 2009.
    [11] HAN Y F, TANG E L, HE L P, et al. Evolutionary characteristics of thermal radiation induced by 2A12 aluminum plate under hypervelocity impact loading [J]. International Journal of Impact Engineering, 2019, 125: 173–179. doi: 10.1016/j.ijimpeng.2018.11.013
    [12] CHEN C, TANG E L, ZHU W J, et al. Modified model of Al/PTFE projectile impact reaction energy release considering energy loss [J]. Experimental Thermal and Fluid Science, 2020, 116: 110132. doi: 10.1016/j.expthermflusci.2020.110132
    [13] AMES R. Vented chamber calorimetry for impact-initiated energetic materials [C]//The 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2005: 275–279.
    [14] 高学平. 高等流体力学 [M]. 天津: 天津大学出版社, 2005.

    GAO X P. Advanced fluid mechanics [M]. Tianjin: Tianjin University Press, 2005.
    [15] 唐恩凌, 徐名扬, 张庆明, 等. 超高速撞击厚靶过程的能量分配研究 [J]. 固体力学学报, 2016, 37(2): 152–160. doi: 10.19636/j.cnki.cjsm42-1250/o3.2016.02.005

    TANG E L, XU M Y, ZHANG Q M, et al. Study on partitioning of energy in hypervelocity impact on thick target [J]. Chinese Journal of Solid Mechanics, 2016, 37(2): 152–160. doi: 10.19636/j.cnki.cjsm42-1250/o3.2016.02.005
    [16] 段春争, 秦泗伟. 淬硬GCr15钢在高温和高应变率下的动态再结晶动力学模型 [J]. 金属热处理, 2017, 42(2): 34–38. doi: 10.13251/j.issn.0254-6051.2017.02.008

    DUAN C Z, QIN S W. Dynamic recrystallization kinetics model of hardened GCr15 steelat high temperature and high strain rate [J]. Heat Treatment of Metals, 2017, 42(2): 34–38. doi: 10.13251/j.issn.0254-6051.2017.02.008
    [17] 张路明, 马胜国, 李志强, 等. Al x CoCrFeNi高熵合金力学性能的分子动力学模拟 [J]. 高压物理学报, 2021, 35(5): 052201. doi: 10.11858/gywlxb.20210730

    ZHANG L M, MA S G, LI Z Q, et al. Mechanical properties of Al x CoCrFeNi high-entropy alloy: a molecular dynamics study [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 052201. doi: 10.11858/gywlxb.20210730
  • 加载中
图(20) / 表(5)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  36
  • PDF下载量:  44
出版历程
  • 收稿日期:  2023-12-18
  • 修回日期:  2024-01-02
  • 网络出版日期:  2024-01-29
  • 刊出日期:  2024-02-05

目录

    /

    返回文章
    返回