Research Progress of In-Situ Technology in Ultra-High Static Pressure Food Processing
-
摘要: 超高静压加工技术可应用于食品灭菌、改良食品品质以及活性成分提取等。传统研究中,高静压下的有机物结构及功能分析均是在压力释放后进行的,只有在压力施加过程中发生了不可逆变化才能在卸压后被测量出来,鲜少进行压力施加过程中的原位监测。原位测量可提供样品动态信息并了解其变化过程。基于此,近年来发展了许多高压下的原位研究工作。本文综述了高压原位分析技术的发展及其在高静压食品加工中的应用,主要包括高压下的蛋白质折叠与变性、淀粉糊化机理的原位研究、微生物原位监测等,并总结了原位技术在食品加工中的挑战。Abstract: Ultra high static pressure processing technology holds promise for food sterilization, improving food quality, and extracting active ingredients. Traditional research typically assesses the analysis of the structure and function of organic matter under high static pressure after pressure release, capturing only irreversible changes occurring during compression. In-situ monitoring under pressure is rarely conducted. In-situ technology provides dynamic insights into sample behavior, offering a deeper understanding of its transformation process. Consequently, recent years have witnessed a surge in-situ studies performed under high pressure. This article reviews the advancement of high-pressure in-situ analysis technology and its application in high static pressure food processing. Key areas covered, include structural changes and phase transition intervals of protein folding and denaturation under high pressure, in-situ investigations into the mechanism of starch gelatinization, microbial in-situ monitoring and the challenges of in-situ technology in food processing.
-
Key words:
- in-situ technology /
- protein /
- carbohydrates /
- microorganism
-
图 4 IPMDH二聚体的内部腔和观察到的水渗透:0.1 MPa (a)和580 MPa (b)下IPMDH二聚体的内部空腔表面表征,0.1 MPa (c)和580 MPa (d)下空腔周围的放大图
Figure 4. Internal cavities of the IPMDH dimer and observed water penetration: (a) and (b) show internal cavities of the IPMDH dimer as surface representations at 0.1 and 580 MPa, respectively; (c) and (d) are magnified views around the cavity at 0.1 and 580 MPa, respectively
图 5 SNase及其空腔突变体的展开:(a) SNase 3D结构和(b) SNase色氨酸(trp140)荧光谱,(c) I92A 空腔突变体的高压荧光平均发射波长分布,(d) SNase及其10个空腔突变体的体积
Figure 5. Unfolding of SNase and cavity-containing variants: (a) SNase 3D structure and (b) fluorescence emission from SNase tryptophan (trp140); (c) high-pressure fluorescence average emission wavelength profile for I92A variant;(d) volume measurements were performed on SNase and its 10 cavity mutants
图 8 枯草芽孢杆菌的TEM图像:枯草芽孢杆菌的(a)正常营养形态和(b)正常孢子(箭头指向营养细胞壁的残余),(c)~(d)高温灭菌后枯草芽孢杆菌的营养物质和孢子
Figure 8. TEM images of Bacillus subtilis: (a) normal vegetative form and (b) normal spore of Bacillus subtilis (Arrowheads point to the remains of vegetative cell wall); (c)−(d) nutrients and spores of Bacillus subtilis after HHP
图 11 (a) 在含13C-葡萄糖的培养基中生长的单个裂殖酵母活细胞的延时多模式拉曼成像目标细胞的亮场光学图像(31 h的箭头表示脂滴,被识别为黑点),(b) 细胞线粒体的 GFP 荧光图像,(c)~(f) 分别在1003 cm−1(12C-蛋白质的苯环呼吸模式)、967 cm−1(13C取代蛋白质的苯环呼吸模式)、1301 cm−1(脂质的平面内CH2 扭曲)和1602 cm−1 处的拉曼图像,(g) (d)与(e)的关联图像
Figure 11. (a) Time-lapse multimode Raman imaging of single living S. pombe cell grown in 13C-glucose-containing medium bright-field optical images of the target cell. (The arrow at 31 h represents lipid droplets, which was recognized as black dots.); (b) GFP fluorescence images of the cell’s mitochondria; (c)–(f) Raman images at 1003 cm−1 (Phe breathing mode of12C-proteins), 967 cm−1 (Phe breathing mode of 13C-substituted proteins), 1301 cm−1 (in-plane CH2 twist of lipids), and 1602 cm−1; (g) correlation images between (d) and (e)
表 1 土豆淀粉的非原位高压糊化实验的热力学数据[45]
Table 1. Thermodynamic data of potato starch non in-situ high-pressure gelatinization experiment[45]
Pressure/MPa Onset temperature/℃ Peak temperature/℃ Conclusion temperature/℃ Enthalpy of gelatinization/(J·g−1) Gelatinization degree/% 0 52.7±0.3b 58.3±0.5c 66.2±1.0abc 3.163±0.043a 200 53.3±0.2b 59.8±0.5b 67.0±0.2a 2.878±0.066b 9.01 300 52.9±0.7b 58.8±0.9bc 65.5±0.6bc 2.846±0.127b 10.02 400 53.4±0.5b 58.7±0.8bc 65.1±0.8c 2.435±0.065c 23.01 500 55.0±0.1a 59.5±0.1b 65.6±0.4bc 2.188±0.037d 30.82 600 55.9±1.6a 62.4±1.5a 66.5±0.5ab 0.353±0.082e 88.84 Note:Different letters (Superscript a, b, c, d, e) in the same column indicate significant differences (P<0.05). -
[1] HUANG Q, YU D L, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510(7504): 250–253. doi: 10.1038/nature13381 [2] DUAN D F, LIU Y X, MA Y B, et al. Structure and superconductivity of hydrides at high pressures [J]. National Science Review, 2017, 4(1): 121–135. doi: 10.1093/nsr/nww029 [3] LI F F, CUI Q L, CUI T, et al. In situ Brillouin scattering study of water in high pressure and high temperature conditions [J]. Journal of Physics: Condensed Matter, 2007, 19(42): 425205. doi: 10.1088/0953-8984/19/42/425205 [4] EREMETS M I, DROZDOV A P, KONG P P, et al. Semimetallic molecular hydrogen at pressure above 350 GPa [J]. Nature Physics, 2019, 15(12): 1246–1249. doi: 10.1038/s41567-019-0646-x [5] LOUBEYRE P, OCCELLI F, DUMAS P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen [J]. Nature, 2020, 577(7792): 631–635. doi: 10.1038/s41586-019-1927-3 [6] AUBOURG S P. Impact of high-pressure processing on chemical constituents and nutritional properties in aquatic foods: a review [J]. International Journal of Food Science and Technology, 2018, 53(4): 873–891. doi: 10.1111/ijfs.13693 [7] SYED Q A, BUFFA M, GUAMIS B, et al. Factors affecting bacterial inactivation during high hydrostatic pressure processing of foods: a review [J]. Critical Reviews in Food Science and Nutrition, 2016, 56(3): 474–483. doi: 10.1080/10408398.2013.779570 [8] DENG H T, CAO J J, WANG D F, et al. Effects of high hydrostatic pressure on inactivation, morphological damage, and enzyme activity of Escherichia coli O157: H7 [J]. Journal of Food Safety, 2022, 42(5): e12998. doi: 10.1111/jfs.12998 [9] TORRES-OSSANDÓN M J, VEGA-GÁLVEZ A, LÓPEZ J, et al. Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L. ) [J]. The Journal of Supercritical Fluids, 2018, 138: 215–220. doi: 10.1016/j.supflu.2018.05.005 [10] QIN Z H, GUO X F, LIN Y, et al. Effects of high hydrostatic pressure on physicochemical and functional properties of walnut (Juglans regia L.) protein isolate [J]. Journal of the Science of Food and Agriculture, 2013, 93(5): 1105–1111. doi: 10.1002/jsfa.5857 [11] MAO H K, CHEN X J, DING Y, et al. Solids, liquids, and gases under high pressure [J]. Reviews of Modern Physics, 2018, 90(1): 015007. doi: 10.1103/RevModPhys.90.015007 [12] 韩奇钢, 班庆初. 小型超高压装置的设计原理及研究进展 [J]. 高压物理学报, 2015, 29(5): 337–346. doi: 10.11858/gywlxb.2015.05.003HAN Q G, BAN Q C. Design theory, research and development of miniature ultra-high pressure devices [J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 337–346. doi: 10.11858/gywlxb.2015.05.003 [13] AKASAKA K, YAMADA H. On-line cell high-pressure nuclear magnetic resonance technique: application to protein studies [J]. Methods in Enzymology, 2001, 338: 134–158. doi: 10.1016/s0076-6879(02)38218-1 [14] MINKOV V S, KRYLOV A S, BOLDYREVA E V, et al. Pressure-induced phase transitions in crystalline L- and DL-cysteine [J]. The Journal of Physical Chemistry B, 2008, 112(30): 8851–8854. doi: 10.1021/jp8020276 [15] LUZ-LIMA C, DE SOUSA G P, LIMA J A, et al. High pressure Raman spectra of β-form of L-glutamic acid [J]. Vibrational Spectroscopy, 2012, 58: 181–187. doi: 10.1016/j.vibspec.2011.12.005 [16] TUMANOV N A, BOLDYREVA E V. X-ray diffraction and Raman study of DL-alanine at high pressure: revision of phase transitions [J]. Acta Crystallographica Section B: Structural Science, 2012, 68(4): 412–423. doi: 10.1107/S0108768112028972 [17] ABAGARO B T O, Freire P T C, Silva J G, et al. High pressure Raman scattering of DL-leucine crystals [J]. Vibrational Spectroscopy, 2013, 66: 119–122. doi: 10.1016/j.vibspec.2013.03.001 [18] HOLANDA R O, FREIRE P T C, SILVA J A F, et al. High pressure Raman spectra of D-threonine crystal [J]. Vibrational Spectroscopy, 2013, 67: 1–5. doi: 10.1016/j.vibspec.2013.03.003 [19] MELO W D C, FREIRE P T C, FILHO J M, et al. Raman spectroscopy of D-methionine under high pressure [J]. Vibrational Spectroscopy, 2014, 72: 57–61. doi: 10.1016/j.vibspec.2014.02.012 [20] KOLESNIK E N, GORYAINOV S V, BOLDYREVA E V. Different behavior of L- and DL-serine crystals at high pressures: phase transitions in L-serine and stability of the DL-serine structure [J]. Doklady Physical Chemistry, 2005, 404(1): 169–172. doi: 10.1007/s10634-005-0052-1 [21] FU C, YAO X S, ZHANG S N, et al. High-pressure in situ methods revealing the effect of pressure on glutathione structure [J]. Food Chemistry, 2021, 359: 129808. doi: 10.1016/j.foodchem.2021.129808 [22] 戴超. 食品小分子高压下结构变化的拉曼光谱研究 [D]. 广州: 华南农业大学, 2018.DAI C. Raman spectroscopic study on structural changes of small food molecule under high pressure [D]. Guangzhou: South China Agricultural University, 2018. [23] ZHENG Z H, YAO X S, ZHANG S N, et al. In-situ Raman study of α-D-glucose under different pressure and temperature [J]. Journal of Molecular Structure, 2023, 1274: 134539. doi: 10.1016/j.molstruc.2022.134539 [24] YAO X S, FU C, ZHANG S N, et al. Structure investigation of β-D-fructose crystal under high pressure: Raman scattering, IR absorption, and synchrotron X-ray diffraction [J]. Journal of Molecular Structure, 2020, 1220: 128746. doi: 10.1016/j.molstruc.2020.128746 [25] 方亮. 超高压处理对猕猴桃果汁杀菌钝酶效果和品质的影响 [D]. 无锡: 江南大学, 2008.FANG L. Effect of high pressure treatment on sterilization, enzyme inactivation and quality of kiwifruit juice [D]. Wuxi: Jiangnan University, 2008. [26] 韩晶晶, 储祥蔷. 利用中子散射探索生命世界中的物理奥秘 [J]. 物理, 2019, 48(12): 780–789. doi: 10.7693/wl20191202HAN J J, CHU X Q. Using neutron scattering to explore the mysteries in biophysical sciences [J]. Physics, 2019, 48(12): 780–789. doi: 10.7693/wl20191202 [27] 江波, 缪铭. 高静压加工优化食品酶催化体系: 现状与趋势 [J]. 中国食品学报, 2011, 11(9): 93–97. doi: 10.3969/j.issn.1009-7848.2011.09.010JIANG B, MIAO M. Catalytic system of food enzyme under hydrostatic high pressure: status and trends [J]. Journal of Chinese Institute of Food Science and Technology, 2011, 11(9): 93–97. doi: 10.3969/j.issn.1009-7848.2011.09.010 [28] ROCKLIN G J, CHIDYAUSIKU T M, GORESHNIK I, et al. Global analysis of protein folding using massively parallel design, synthesis, and testing [J]. Science, 2017, 357(6347): 168–175. doi: 10.1126/science.aan0693 [29] 杨新颖. 高静压对解脂耶氏酵母脂肪酶的作用及其机理初探 [D]. 无锡: 江南大学, 2016.YANG X Y. Tentative exploration of the effect and mechanism of high hydrostatic pressure on Yarrowia lipolytica lipase lip2 [D]. Wuxi: Jiangnan University, 2016. [30] MANGIALARDO S, PICCIRILLI F, PERUCCHI A, et al. Raman analysis of insulin denaturation induced by high-pressure and thermal treatments [J]. Journal of Raman Spectroscopy, 2012, 43(6): 692–700. doi: 10.1002/jrs.3097 [31] MÖLLER J, SCHROER M A, ERLKAMP M, et al. The effect of ionic strength, temperature, and pressure on the interaction potential of dense protein solutions: from nonlinear pressure response to protein crystallization [J]. Biophysical Journal, 2012, 102(11): 2641–2648. doi: 10.1016/j.bpj.2012.04.043 [32] NAGAE T, KAWAMURA T, CHAVAS L M G, et al. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase [J]. Acta Crystallographica Section D: Biological Crystallography, 2012, 68(3): 300–309. doi: 10.1107/S0907444912001862 [33] ROCHE J, CARO J A, NORBERTO D R, et al. Cavities determine the pressure unfolding of proteins [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(18): 6945–6950. doi: 10.1073/pnas.1200915109 [34] ROCHE J, DELLAROLE M, CARO J A, et al. Remodeling of the folding free energy landscape of staphylococcal nuclease by cavity-creating mutations [J]. Biochemistry, 2012, 51(47): 9535–9546. doi: 10.1021/bi301071z [35] CHEN G, MIAO M, JIANG B, et al. Effects of high hydrostatic pressure on lipase from Rhizopus chinensis: Ⅰ. conformational changes [J]. Innovative Food Science & Emerging Technologies, 2017, 41: 267–276. doi: 10.1016/j.ifset.2017.03.016 [36] ZHOU H L, WANG F H, NIU H H, et al. Structural studies and molecular dynamic simulations of polyphenol oxidase treated by high pressure processing [J]. Food Chemistry, 2022, 372: 131243. doi: 10.1016/j.foodchem.2021.131243 [37] DE JESUS A L T, LEITE T S, CRISTIANINI M. High isostatic pressure and thermal processing of açaí fruit (Euterpe oleracea Martius): effect on pulp color and inactivation of peroxidase and polyphenol oxidase [J]. Food Research International, 2018, 105: 853–862. doi: 10.1016/j.foodres.2017.12.013 [38] 李汴生, 朱悦夫, 张微, 等. 低温和中温协同超高压对鲜榨荔枝汁灭酶处理和色泽影响的研究 [J]. 现代食品科技, 2017, 33(7): 151–156. doi: 10.13982/j.mfst.1673-9078.2017.7.022LI B S, ZHU Y F, ZHANG W, et al. Effect of high pressure processing (HPP) combined with low and moderate temperature treatments on the color and enzyme inactivation in freshly squeezed lychee juice [J]. Modern Food Science and Technology, 2017, 33(7): 151–156. doi: 10.13982/j.mfst.1673-9078.2017.7.022 [39] ZHANG S N, ZHENG Z H, ZHENG C Y, et al. Effect of high hydrostatic pressure on activity, thermal stability and structure of horseradish peroxidase [J]. Food Chemistry, 2022, 379: 132142. doi: 10.1016/j.foodchem.2022.132142 [40] CHEN G, ZHANG Q P, CHEN H T, et al. In situ and real-time insight into Rhizopus chinensis lipase under high pressure and temperature: conformational traits and biobehavioural analysis [J]. International Journal of Biological Macromolecules, 2020, 154: 1314–1323. doi: 10.1016/j.ijbiomac.2019.11.009 [41] TEIXEIRA A S, DELADINO L, GARCÍA M A, et al. Microstructure analysis of high pressure induced gelatinization of maize starch in the presence of hydrocolloids [J]. Food and Bioproducts Processing, 2018, 112: 119–130. doi: 10.1016/j.fbp.2018.09.009 [42] CASTRO L M G, ALEXANDRE E M C, SARAIVA J A, et al. Impact of high pressure on starch properties: a review [J]. Food Hydrocolloids, 2020, 106: 105877. doi: 10.1016/j.foodhyd.2020.105877 [43] LEITE T S, DE JESUS A L T, SCHMIELE M, et al. High pressure processing (HPP) of pea starch: effect on the gelatinization properties [J]. LWT-Food Science and Technology, 2017, 76: 361–369. doi: 10.1016/j.lwt.2016.07.036 [44] LIU P L, HU X S, SHEN Q. Effect of high hydrostatic pressure on starches: a review [J]. Starch-Stärke, 2010, 62(12): 615–628. doi: 10.1002/star.201000001 [45] LIN Y F, YAO X S, ZHANG S N, et al. Comprehensive investigation of pressure-induced gelatinization of starches using in situ and ex-situ technical analyses [J]. Food Chemistry, 2024, 440: 138159. doi: 10.1016/j.foodchem.2023.138159 [46] 曾庆梅, 谢慧明, 潘见, 等. 超高压处理对枯草芽孢杆菌超微结构的影响 [J]. 高压物理学报, 2006, 20(1): 83–87. doi: 10.3969/j.issn.1000-5773.2006.01.016ZENG Q M, XIE H M, PAN J, et al. Effect of ultra-high pressure processing (UHPP) on the microstructure of Bacillus subtilis [J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 83–87. doi: 10.3969/j.issn.1000-5773.2006.01.016 [47] OGER P M, DANIEL I, PICARD A. In situ Raman and X-ray spectroscopies to monitor microbial activities under high hydrostatic pressure [J]. Annals of the New York Academy of Sciences, 2010, 1189(1): 113–120. doi: 10.1111/j.1749-6632.2009.05176.x [48] OGER P M, DANIEL I, PICARD A. Development of a low-pressure diamond anvil cell and analytical tools to monitor microbial activities in situ under controlled P and T [J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2006, 1764(3): 434–442. doi: 10.1016/j.bbapap.2005.11.009 [49] 刘聪, 谢伟, 何林, 等. 单细胞拉曼光谱在微生物研究中的应用 [J]. 微生物学报, 2020, 60(6): 1051–1062. doi: 10.13343/j.cnki.wsxb.20190274LIU C, XIE W, HE L, et al. Advances in the application of Raman microspectroscopy in microbe research [J]. Acta Microbiologica Sinica, 2020, 60(6): 1051–1062. doi: 10.13343/j.cnki.wsxb.20190274 [50] TAO Y F, WANG Y, HUANG S, et al. Metabolic-activity-based assessment of antimicrobial effects by D2O-labeled single-cell Raman microspectroscopy [J]. Analytical Chemistry, 2017, 89(7): 4108–4115. doi: 10.1021/acs.analchem.6b05051 [51] WANG Y, HUANG W E, CUI L, et al. Single cell stable isotope probing in microbiology using Raman microspectroscopy [J]. Current Opinion in Biotechnology, 2016, 41: 34–42. doi: 10.1016/j.copbio.2016.04.018 [52] NOOTHALAPATI H, SHIGETO S. Exploring metabolic pathways in vivo by a combined approach of mixed stable isotope-labeled Raman microspectroscopy and multivariate curve resolution analysis [J]. Analytical Chemistry, 2014, 86(15): 7828–7834. doi: 10.1021/ac501735c [53] CUI L, YANG K, ZHU Y G. Stable isotope-labeled single-cell Raman spectroscopy revealing function and activity of environmental microbes [J]. Methods in Molecular Biology, 2019, 2046: 95–107. doi: 10.1007/978-1-4939-9721-3_8 [54] 祁亚峰, 刘宇宏, 刘大猛. 拉曼光谱技术在肿瘤诊断上的应用研究进展 [J]. 激光与光电子学进展, 2020, 57(22): 220001. doi: 10.3788/LOP57.220001QI Y F, LIU Y H, LIU D M. Research progress on application of Raman spectroscopy in tumor diagnosis [J]. Laser & Optoelectronics Progress, 2020, 57(22): 220001. doi: 10.3788/LOP57.220001 [55] RANJAN R, INDOLFI M, FERRARA M A, et al. Implementation of a nonlinear microscope based on stimulated Raman scattering [J]. Journal of Visualized Experiments, 2019, 149: e59614. doi: 10.3791/59614 [56] YANG W L, LI A, SUO Y Z, et al. Simultaneous two-color stimulated Raman scattering microscopy by adding a fiber amplifier to a 2 ps OPO-based SRS microscope [J]. Optics Letters, 2017, 42(3): 523–526. doi: 10.1364/OL.42.000523 [57] KRAFFT C, SCHIE I W, MEYER T, et al. Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications [J]. Chemical Society Reviews, 2016, 45(7): 1819–1849. doi: 10.1039/C5CS00564G [58] OZEKI Y, KITAGAWA Y, SUMIMURA K, et al. Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses [J]. Optics Express, 2010, 18(13): 13708–13719. doi: 10.1364/OE.18.013708 [59] 刘照军, 陶亚萍. 拉曼光谱成像技术新进展及其应用 [J]. 现代仪器, 2009, 15(5): 34–37. doi: 10.3969/j.issn.1672-7916.2009.05.007LIU Z J, TAO Y P. Raman spectral imaging technology: new developments and applications [J]. Modern Instruments, 2009, 15(5): 34–37. doi: 10.3969/j.issn.1672-7916.2009.05.007 [60] VENKATA H N N, SHIGETO S. Stable isotope-labeled Raman imaging reveals dynamic proteome localization to lipid droplets in single fission yeast cells [J]. Chemistry & Biology, 2012, 19(11): 1373–1380. doi: 10.1016/j.chembiol.2012.08.020 [61] WU D Y, LI J F, REN B, et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures [J]. Chemical Society Reviews, 2008, 37(5): 1025–1041. doi: 10.1039/b707872m [62] CIALLA D, MÄRZ A, BÖHME R, et al. Surface-enhanced Raman spectroscopy (SERS): progress and trends [J]. Analytical and Bioanalytical Chemistry, 2012, 403(1): 27–54. doi: 10.1007/s00216-011-5631-x [63] CHENG L N, SUN D W, ZHU Z W, et al. Emerging techniques for assisting and accelerating food freezing processes: a review of recent research progresses [J]. Critical Reviews in Food Science and Nutrition, 2017, 57(4): 769–781. doi: 10.1080/10408398.2015.1004569 [64] 李立, 孙智慧, 李晓燕, 等. 超高压技术在冷冻食品加工中的应用 [J]. 食品工业, 2021, 42(6): 328–333.LI L, SUN Z H, LI X Y, et al. Application of high pressure technology in frozen food processing [J]. The Food Industry, 2021, 42(6): 328–333. [65] HONG G P, CHOI M J. Comparison of the quality characteristics of abalone processed by high-pressure sub-zero temperature and pressure-shift freezing [J]. Innovative Food Science & Emerging Technologies, 2016, 33: 19–25. doi: 10.1016/j.ifset.2015.12.024 [66] 苏光明, RAMASWAMY H S, 于勇, 等. 牛肉高压冷冻过程中热变化和冰晶形态研究 [J]. 农业机械学报, 2014, 45(3): 206–214.SU G M, RAMASWAMY H S, YU Y, et al. Thermal behaviors and ice crystal properties in pressure shift freezing of beef [J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(3): 206–214. [67] 张小羽, 成培芳, 刘博, 等. 超高压处理对奶豆腐冻藏品质特性及微观结构的影响 [J]. 食品科学, 2022, 43(13): 40–47. doi: 10.7506/spkx1002-6630-20210705-033ZHANG X Y, CHENG P F, LIU B, et al. Effect of ultra-high pressure treatment on the quality characteristics and microstructure of frozen hurood [J]. Food Science, 2022, 43(13): 40–47. doi: 10.7506/spkx1002-6630-20210705-033 [68] SHAHNAZAR S, BAGHERI S, TERMEHYOUSEFI A, et al. Structure, mechanism, and performance evaluation of natural gas hydrate kinetic inhibitors [J]. Reviews in Inorganic Chemistry, 2018, 38(1): 1–19. doi: 10.1515/revic-2017-0013 [69] CLAΒEN T, JAEGER M, LOEKMAN S, et al. Concentration of apple juice using CO2 gas hydrate technology to higher sugar contents [J]. Innovative Food Science & Emerging Technologies, 2020, 65: 102458. doi: 10.1016/j.ifset.2020.102458 [70] LI S F, SHEN Y M, LIU D B, et al. Concentrating orange juice through CO2 clathrate hydrate technology [J]. Chemical Engineering Research & Design, 2015, 93: 773–778. doi: 10.1016/j.cherd.2014.07.020 [71] LI S F, SHEN Y M, LIU D B, et al. Experimental study of concentration of tomato juice by CO2 hydrate formation [J]. Chemical Industry & Chemical Engineering Quarterly, 2015, 21(3): 441–446. doi: 10.2298/CICEQ140730046L [72] UWINEZA P A, WAŚKIEWICZ A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials [J]. Molecules, 2020, 25(17): 3847. doi: 10.3390/molecules25173847 [73] 陈贤伟, 杨泞琪. 浅谈超临界萃取 [J]. 福建分析测试, 2021, 30(6): 43–48. doi: 10.3969/j.issn.1009-8143.2021.06.09CHEN X W, YANG N Q. Discussion on supercritical fluid extraction [J]. Fujian Analysis & Testing, 2021, 30(6): 43–48. doi: 10.3969/j.issn.1009-8143.2021.06.09 [74] BUZOLIN C N, PALANCO M E, WENDT O F, et al. In situ determination of dissolution kinetics of D-limonene in supercritical carbon dioxide by Raman spectroscopy [J]. New Journal of Chemistry, 2017, 41(22): 13929–13934. doi: 10.1039/C7NJ02549A