[1] |
UDDIN J, BARONE V, SCUSERIA G E. Energy storage capacity of polymeric nitrogen [J]. Molecular Physics, 2006, 104(5/6/7): 745–749. doi: 10.1080/00268970500417325
|
[2] |
EREMETS M I, GAVRILIUK A G, SEREBRYANAYA N R, et al. Structural transformation of molecular nitrogen to a single-bonded atomic state at high pressures [J]. The Journal of Chemical Physics, 2004, 121(22): 11296–11300. doi: 10.1063/1.1814074
|
[3] |
SUN J, MARTINEZ-CANALES M, KLUG D D, et al. Stable all-nitrogen metallic salt at terapascal pressures [J]. Physical Review Letters, 2013, 111(17): 175502. doi: 10.1103/PhysRevLett.111.175502
|
[4] |
ADELEKE A A, GRESCHNER M J, MAJUMDAR A, et al. Single-bonded allotrope of nitrogen predicted at high pressure [J]. Physical Review B, 2017, 96(22): 224104. doi: 10.1103/PhysRevB.96.224104
|
[5] |
LIU S J, ZHAO L, YAO M G, et al. Novel all-nitrogen molecular crystals of aromatic N10 [J]. Advanced Science, 2020, 7(10): 1902320. doi: 10.1002/advs.201902320
|
[6] |
LI Y W, FENG X L, LIU H Y, et al. Route to high-energy density polymeric nitrogen t-N via He-N compounds [J]. Nature Communications, 2018, 9(1): 722. doi: 10.1038/s41467-018-03200-4
|
[7] |
PICKARD C J, NEEDS R J. High-pressure phases of nitrogen [J]. Physical Review Letters, 2009, 102(12): 125702. doi: 10.1103/PhysRevLett.102.125702
|
[8] |
LI Q S, ZHAO J F. Theoretical study of potential energy surfaces for N12 clusters [J]. The Journal of Physical Chemistry A, 2002, 106(21): 5367–5372. doi: 10.1021/jp020110n
|
[9] |
HIRSHBERG B, GERBER R B, KRYLOV A I. Calculations predict a stable molecular crystal of N8 [J]. Nature Chemistry, 2014, 6(1): 52–56. doi: 10.1038/nchem.1818
|
[10] |
GRESCHNER M J, ZHANG M, MAJUMDAR A, et al. A new allotrope of nitrogen as high-energy density material [J]. The Journal of Physical Chemistry A, 2016, 120(18): 2920–2925. doi: 10.1021/acs.jpca.6b01655
|
[11] |
XU Y G, WANG Q, SHEN C, et al. A series of energetic metal pentazolate hydrates [J]. Nature, 2017, 549(7670): 78–81. doi: 10.1038/nature23662
|
[12] |
ZHAO L, LIU S J, CHEN Y Z, et al. A novel all-nitrogen molecular crystal N16 as a promising high-energy-density material [J]. Dalton Transactions, 2022, 51(24): 9369–9376. doi: 10.1039/D2DT00820C
|
[13] |
BONDARCHUK S V. Bipentazole (N10): a low-energy molecular nitrogen allotrope with high intrinsic stability [J]. The Journal of Physical Chemistry Letters, 2020, 11(14): 5544–5548. doi: 10.1021/acs.jpclett.0c01542
|
[14] |
GONCHAROV A F, GREGORYANZ E, MAO H K, et al. Optical evidence for a nonmolecular phase of nitrogen above 150 GPa [J]. Physical Review Letters, 2000, 85(6): 1262–1265. doi: 10.1103/PhysRevLett.85.1262
|
[15] |
ZENG G Y, QI X F, LIU X B, et al. Advances in disruptive technologies of ultrahigh-energetic materials [J]. Journal of Physics: Conference Series, 2021, 1721: 012009. doi: 10.1088/1742-6596/1721/1/012009
|
[16] |
MAILHIOT C, YANG L H, MCMAHAN A K. Polymeric nitrogen [J]. Physical Review B, 1992, 46(22): 14419–14435. doi: 10.1103/PhysRevB.46.14419
|
[17] |
MARTIN R M, NEEDS R J. Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures [J]. Physical Review B, 1986, 34(8): 5082–5092. doi: 10.1103/PhysRevB.34.5082
|
[18] |
LEWIS S P, COHEN M L. High-pressure atomic phases of solid nitrogen [J]. Physical Review B, 1992, 46(17): 11117–11120. doi: 10.1103/PhysRevB.46.11117
|
[19] |
MA Y M, OGANOV A R, LI Z W, et al. Novel high pressure structures of polymeric nitrogen [J]. Physical Review Letters, 2009, 102(6): 065501. doi: 10.1103/PhysRevLett.102.065501
|
[20] |
WANG X L, WANG Y C, MIAO M S, et al. Cagelike diamondoid nitrogen at high pressures [J]. Physical Review Letters, 2012, 109(17): 175502. doi: 10.1103/PhysRevLett.109.175502
|
[21] |
EREMETS M I, GAVRILIUK A G, TROJAN I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Materials, 2004, 3(8): 558–563. doi: 10.1038/nmat1146
|
[22] |
TOMASINO D, KIM M, SMITH J, et al. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity [J]. Physical Review Letters, 2014, 113(20): 205502. doi: 10.1103/PhysRevLett.113.205502
|
[23] |
LANIEL D, WINKLER B, FEDOTENKO T, et al. High-pressure polymeric nitrogen allotrope with the black phosphorus structure [J]. Physical Review Letters, 2020, 124(21): 216001. doi: 10.1103/PhysRevLett.124.216001
|
[24] |
JI C, ADELEKE A A, YANG L X, et al. Nitrogen in black phosphorus structure [J]. Science Advances, 2020, 6(23): eaba9206. doi: 10.1126/sciadv.aba9206
|
[25] |
LANIEL D, GENESTE G, WECK G, et al. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa [J]. Physical Review Letters, 2019, 122(6): 066001. doi: 10.1103/PhysRevLett.122.066001
|
[26] |
LANIEL D, WECK G, GAIFFE G, et al. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions [J]. The Journal of Physical Chemistry Letters, 2018, 9(7): 1600–1604. doi: 10.1021/acs.jpclett.8b00540
|
[27] |
STEELE B A, STAVROU E, CROWHURST J C, et al. High-pressure synthesis of a pentazolate salt [J]. Chemistry of Materials, 2017, 29(2): 735–741. doi: 10.1021/acs.chemmater.6b04538
|
[28] |
LANIEL D, WINKLER B, KOEMETS E, et al. Synthesis of magnesium-nitrogen salts of polynitrogen anions [J]. Nature Communications, 2019, 10(1): 4515. doi: 10.1038/s41467-019-12530-w
|
[29] |
WANG Y, BYKOV M, CHEPKASOV I, et al. Stabilization of hexazine rings in potassium polynitride at high pressure [J]. Nature Chemistry, 2022, 14(7): 794–800. doi: 10.1038/s41557-022-00925-0
|
[30] |
BYKOV M, BYKOVA E, PONOMAREVA A V, et al. Stabilization of polynitrogen anions in tantalum-nitrogen compounds at high pressure [J]. Angewandte Chemie International Edition, 2021, 60(16): 9003–9008. doi: 10.1002/anie.202100283
|
[31] |
SALKE N P, XIA K, FU S Y, et al. Tungsten hexanitride with single-bonded armchairlike hexazine structure at high pressure [J]. Physical Review Letters, 2021, 126(6): 065702. doi: 10.1103/PhysRevLett.126.065702
|
[32] |
BYKOV M, BYKOVA E, KOEMETS E, et al. High-pressure synthesis of a nitrogen-rich inclusion compound ReN8·xN2 with conjugated polymeric nitrogen chains [J]. Angewandte Chemie International Edition, 2018, 57(29): 9048–9053. doi: 10.1002/anie.201805152
|
[33] |
BYKOV M, CHARITON S, BYKOVA E, et al. High-pressure synthesis of metal-inorganic frameworks Hf4N20·N2, WN8·N2, and Os5N28·3N2 with polymeric nitrogen linkers [J]. Angewandte Chemie International Edition, 2020, 59(26): 10321–10326. doi: 10.1002/anie.202002487
|
[34] |
BYKOV M, BYKOVA E, APRILIS G, et al. Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains [J]. Nature Communications, 2018, 9(1): 2756. doi: 10.1038/s41467-018-05143-2
|
[35] |
ASLANDUKOV A, TRYBEL F, ASLANDUKOVA A, et al. Anionic N18 macrocycles and a polynitrogen double helix in novel yttrium polynitrides YN6 and Y2N11 at 100 GPa [J]. Angewandte Chemie International Edition, 2022, 61(34): e202207469. doi: 10.1002/anie.202207469
|
[36] |
BYKOV M, FEDOTENKO T, CHARITON S, et al. High-pressure synthesis of Dirac materials: layered van der Waals bonded BeN4 polymorph [J]. Physical Review Letters, 2021, 126(17): 175501. doi: 10.1103/PhysRevLett.126.175501
|
[37] |
SUI M H, LIU S, WANG P, et al. High-pressure synthesis of fully sp2-hybridized polymeric nitrogen layer in potassium supernitride [J]. Science Bulletin, 2023, 68(14): 1505–1513. doi: 10.1016/j.scib.2023.06.029
|
[38] |
ZHAI H, XU R, DAI J H, et al. Stabilized nitrogen framework anions in the Ga-N system [J]. Journal of the American Chemical Society, 2022, 144(47): 21640–21647. doi: 10.1021/jacs.2c09056
|
[39] |
PRINGLE G E, NOAKES D E. The crystal structures of lithium, sodium and strontium azides [J]. Acta Crystallographica Section B, 1968, 24(2): 262–269. doi: 10.1107/S0567740868002062
|
[40] |
MEDVEDEV S A, TROJAN I A, EREMETS M I, et al. Phase stability of lithium azide at pressures up to 60 GPa [J]. Journal of Physics: Condensed Matter, 2009, 21(19): 195404. doi: 10.1088/0953-8984/21/19/195404
|
[41] |
ZHANG M G, YAN H Y, WEI Q, et al. Novel high-pressure phase with pseudo-benzene “N6” molecule of LiN3 [J]. Europhysics Letters, 2013, 101(2): 26004. doi: 10.1209/0295-5075/101/26004
|
[42] |
WANG X L, LI J F, BOTANA J, et al. Polymerization of nitrogen in lithium azide [J]. The Journal of Chemical Physics, 2013, 139(16): 164710. doi: 10.1063/1.4826636
|
[43] |
EREMETS M I, POPOV M Y, TROJAN I A, et al. Polymerization of nitrogen in sodium azide [J]. The Journal of Chemical Physics, 2004, 120(22): 10618–10623. doi: 10.1063/1.1718250
|
[44] |
ZHU H Y, ZHANG F X, JI C, et al. Pressure-induced series of phase transitions in sodium azide [J]. Journal of Applied Physics, 2013, 113(3): 033511. doi: 10.1063/1.4776235
|
[45] |
ZHANG M G, YIN K T, ZHANG X X, et al. Structural and electronic properties of sodium azide at high pressure: a first principles study [J]. Solid State Communications, 2013, 161: 13–18. doi: 10.1016/j.ssc.2013.01.032
|
[46] |
ZHANG J, ZENG Z, LIN H Q, et al. Pressure-induced planar N6 rings in potassium azide [J]. Scientific Reports, 2014, 4(1): 4358. doi: 10.1038/srep04358
|
[47] |
WANG X L, LI J F, XU N, et al. Layered polymeric nitrogen in RbN3 at high pressures [J]. Scientific Reports, 2015, 5(1): 16677. doi: 10.1038/srep16677
|
[48] |
ZHANG M G, YAN H Y, WEI Q, et al. A new high-pressure polymeric nitrogen phase in potassium azide [J]. RSC Advances, 2015, 5(16): 11825–11830. doi: 10.1039/C4RA15699D
|
[49] |
WANG X L, LI J F, ZHU H Y, et al. Polymerization of nitrogen in cesium azide under modest pressure [J]. The Journal of Chemical Physics, 2014, 141(4): 044717. doi: 10.1063/1.4891367
|
[50] |
PENG F, YAO Y S, LIU H Y, et al. Crystalline LiN5 predicted from first-principles as a possible high-energy material [J]. The Journal of Physical Chemistry Letters, 2015, 6(12): 2363–2366. doi: 10.1021/acs.jpclett.5b00995
|
[51] |
STEELE B A, OLEYNIK I I. Sodium pentazolate: a nitrogen rich high energy density material [J]. Chemical Physics Letters, 2016, 643: 21–26. doi: 10.1016/j.cplett.2015.11.008
|
[52] |
STEELE B A, OLEYNIK I I. Novel potassium polynitrides at high pressures [J]. The Journal of Physical Chemistry A, 2017, 121(46): 8955–8961. doi: 10.1021/acs.jpca.7b08974
|
[53] |
WILLIAMS A S, STEELE B A, OLEYNIK I I. Novel rubidium poly-nitrogen materials at high pressure [J]. The Journal of Chemical Physics, 2017, 147(23): 234701. doi: 10.1063/1.5004416
|
[54] |
ZHANG S T, ZHAO Z Y, LIU L L, et al. Pressure-induced stable BeN4 as a high-energy density material [J]. Journal of Power Sources, 2017, 365: 155–161. doi: 10.1016/j.jpowsour.2017.08.086
|
[55] |
ZHANG X J, XIE X, DONG H F, et al. Pressure-induced high-energy-density BeN4 materials with nitrogen chains: first-principles study [J]. The Journal of Physical Chemistry C, 2021, 125(46): 25376–25382. doi: 10.1021/acs.jpcc.1c07500
|
[56] |
YU S Y, HUANG B W, ZENG Q F, et al. Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium-nitrogen Mg xN y phases under high pressure [J]. The Journal of Physical Chemistry C, 2017, 121(21): 11037–11046. doi: 10.1021/acs.jpcc.7b00474
|
[57] |
BRAUN C, BÖRGER S L, BOYKO T D, et al. Ca3N2 and Mg3N2: unpredicted high-pressure behavior of binary nitrides [J]. Journal of the American Chemical Society, 2011, 133(12): 4307–4315. doi: 10.1021/ja106459e
|
[58] |
KEVE E T, SKAPSKI A C. Crystal structure of dicalcium nitride [J]. Inorganic Chemistry, 1968, 7(9): 1757–1761. doi: 10.1021/ic50067a014
|
[59] |
SCHNEIDER S B, FRANKOVSKY R, SCHNICK W. Synthesis of alkaline earth diazenides MAEN2 (MAE = Ca, Sr, Ba) by controlled thermal decomposition of azides under high pressure [J]. Inorganic Chemistry, 2012, 51(4): 2366–2373. doi: 10.1021/ic2023677
|
[60] |
ZHU S S, PENG F, LIU H Y, et al. Stable calcium nitrides at ambient and high pressures [J]. Inorganic Chemistry, 2016, 55(15): 7550–7555. doi: 10.1021/acs.inorgchem.6b00948
|
[61] |
XIA K, ZHENG X X, YUAN J A, et al. Pressure-stabilized high-energy-density alkaline-earth-metal pentazolate salts [J]. The Journal of Physical Chemistry C, 2019, 123(16): 10205–10211. doi: 10.1021/acs.jpcc.8b12527
|
[62] |
YUAN J N, XIA K, WU J F, et al. High-energy-density pentazolate salts: CaN10 and BaN10 [J]. Science China Physics, Mechanics & Astronomy, 2021, 64(1): 218211.
|
[63] |
LIU Z, LIU Y, LI D, et al. Insights into antibonding induced energy density enhancement and exotic electronic properties for germanium nitrides at modest pressures [J]. Inorganic Chemistry, 2018, 57(16): 10416–10423. doi: 10.1021/acs.inorgchem.8b01669
|
[64] |
LIU Z, LI D, WEI S L, et al. Bonding properties of aluminum nitride at high pressure [J]. Inorganic Chemistry, 2017, 56(13): 7494–7500. doi: 10.1021/acs.inorgchem.7b00980
|
[65] |
WANG B S, LARHLIMI R, VALENCIA H, et al. Prediction of novel tin nitride Sn xN y phases under pressure [J]. The Journal of Physical Chemistry C, 2020, 124(15): 8080–8093. doi: 10.1021/acs.jpcc.9b11404
|