Pressure Calibration Method of 28 GPa for Large-Volume Press
-
摘要: 在大腔体压机中,一般利用压标物质相变时的电阻变化进行腔体压强标定,但目前仍缺少在22.5~34.5 GPa区间的相变压标物质。地球深部矿物50%MgSiO3-50%Al2O3(En50Cor50)在高温高压下转变为钙钛矿结构,且在27 GPa以上钙钛矿结构MgSiO3中溶解的Al2O3含量随压力升高而增加。为此,选取En50Cor50作为大腔体压机中28 GPa的压标物质进行高压腔体压强的间接标定。首先,利用常用压标物质的相变进行腔体压强标定,得到低压区系统油压-腔体压强的校正曲线(6.0~22.5 GPa);随后,根据低压区校正曲线及前人对En50Cor50的研究结果,估算28 GPa腔体压强对应的系统油压;将En50Cor50在预估油压、2000 K温度条件下保温3~7 h;最后,利用X射线衍射、拉曼光谱、电子探针等手段对En50Cor50进行测试分析。结果表明:在该条件下成功合成了布里奇曼石,且Al2O3的溶解度大于13.7%,对照前人的研究结果,确定样品腔体压强约为29 GPa。该方法成功标定了大腔体压机在28 GPa附近的腔体压强,填补了大腔体压机在该压强范围的标定空白。Abstract: In the large-volume press (LVP), the pressure calibration for the sample chamber is generally carried out by using phase transitions of specific materials with resistance changes. But there are no suitable materials for pressure calibration in the range of 22.5−34.5 GPa. As we know, the mineral 50 mol%MgSiO3-50 mol%Al2O3 (En50Cor50) systems in deep earth undergo structural transition to perovskite phase under high pressure and high temperature (HPHT) conditions. Moreover, the content of Al2O3 dissolved in perovskite MgSiO3 increases gradually with raised pressure above 27 GPa. Therefore, En50Cor50 was selected as the pressure calibration material for further calibrating 28 GPa in the LVP in this study, and this is an indirect pressure calibration method. First, the low-pressure calibration curve (6.0−22.5 GPa) of system oil pressure versus chamber pressure was obtained by using the phase transitions of different pressure calibration materials. Then, based on the low-pressure calibration curve and previous research results En50Cor50, the estimated system oil pressure corresponding to the 28 GPa of chamber pressure is 65 MPa. At the estimated oil pressure, the En50Cor50 samples were heated to 2000 K and maintained for 3−7 h. The results of X-ray diffraction, Raman, and electron probe measurements indicate that bridgmanite has been successfully synthesized, and the dissolved Al2O3 molar fraction is greater than 13.7%. According to the previous research results, the corresponding sample chamber pressure is about 29 GPa. This method successfully calibrated the sample chamber pressure around 28 GPa in the LVP, which fill in the blanks for calibrating this pressure range.
-
Key words:
- large-volume press /
- pressure calibration /
- 28 GPa /
- high pressure and high temperature
-
表 1 压标材料及其相变压力
Table 1. Pressure calibration materials and their phase transition pressure
Pressure calibration material Phase transition pressure/GPa Bi (Ⅰ-Ⅱ) 2.6 Bi (Ⅱ-Ⅲ) 2.7 Tl (Ⅱ-Ⅲ) 3.7 Ba 5.5 ZnTe (Ⅰ-Ⅱ) 6.6 Bi (Ⅲ-Ⅳ) 7.7 ZnTe (Ⅱ-Ⅲ) 8.9−9.5 ZnTe (Ⅲ-Ⅳ) 11.5−13.0 ZnS 15.6 GaAs 18.9 GaP 22.5 Zr 34.5 表 2 EDS选点测试得到的En50Cor50样品内各成分的摩尔分数
Table 2. Molar fraction of each component obtained by EDS measurement in En50Cor50 sample
Element Molar fraction/% Mg 21.67 Si 23.13 Al 7.71 MgO 35.94 SiO2 49.49 Al2O3 14.58 表 3 EMPA测试的样品内布里奇曼石中各组分的摩尔分数
Table 3. Molar fraction of each component obtained by EMPA in bridgmanite of sample
Composition Molar fraction/% MgO 34.67 SiO2 51.61 Al2O3 13.74 -
[1] 刘志国, 千正男. 高压技术 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2012: 113–114.LIU Z G, QIAN Z N. High pressure technology [M]. Harbin: Harbin Institute of Technology Press, 2012: 113–114. [2] LIEBERMANN R C. Multi-anvil, high pressure apparatus: a half-century of development and progress [J]. High Pressure Research, 2011, 31(4): 493–532. doi: 10.1080/08957959.2011.618698 [3] 彭放, 贺端威. 应用于高压科学研究的国产铰链式六面顶压机技术发展历程 [J]. 高压物理学报, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600PENG F, HE D W. Development of domestic hinge-type cubic presses based on high pressure scientific research [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600 [4] ISHII T, SHI L L, HUANG R, et al. Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils [J]. Review of Scientific Instruments, 2016, 87(2): 024501. doi: 10.1063/1.4941716 [5] YAMAZAKI D, SHINMEI T, INOUE T, et al. Generation of pressures to ~60 GPa in Kawai-type apparatus and stability of MnGeO3 perovskite at high pressure and high temperature [J]. American Mineralogist, 2006, 91(8/9): 1342–1345. doi: 10.2138/am.2006.2175 [6] TANGE Y, IRIFUNE T, FUNAKOSHI K I. Pressure generation to 80 GPa using multianvil apparatus with sintered diamond anvils [J]. High Pressure Research, 2008, 28(3): 245–254. doi: 10.1080/08957950802208936 [7] HOUSER C. Earth’s rugged lower mantle [J]. Science, 2019, 363(6428): 696–697. doi: 10.1126/science.aaw4601 [8] TANG H, YUAN X H, CHENG Y, et al. Synthesis of paracrystalline diamond [J]. Nature, 2021, 599(7886): 605–610. doi: 10.1038/s41586-021-04122-w [9] YAMAZAKI D, KATO T, OHTANI E, et al. Grain growth rates of MgSiO3 perovskite and periclase under lower mantle conditions [J]. Science, 1996, 274(5295): 2052–2054. doi: 10.1126/science.274.5295.2052 [10] SHANG Y C, SHEN F R, HOU X Y, et al. Pressure generation above 35 GPa in a Walker-type large-volume press [J]. Chinese Physics Letters, 2020, 37(8): 080701. doi: 10.1088/0256-307X/37/8/080701 [11] KUBO A, AKAOGI M. Post-garnet transitions in the system Mg4Si4O12-Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite and perovskite [J]. Physics of the Earth and Planetary Interiors, 2000, 121(1/2): 85–102. doi: 10.1016/S0031-9201(00)00162-X [12] LIU Z D, IRIFUNE T, NISHI M, et al. Phase relations in the system MgSiO3-Al2O3 up to 52 GPa and 2000 K [J]. Physics of the Earth and Planetary Interiors, 2016, 257: 18–27. doi: 10.1016/j.pepi.2016.05.006 [13] LIU Z D, NISHI M, ISHII T, et al. Phase relations in the system MgSiO3-Al2O3 up to 2300 K at lower mantle pressures [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 7775–7788. doi: 10.1002/2017JB014579 [14] ONODERA A, OHTANI A. Fixed points for pressure calibration above 100 kbars related to semiconductor-metal transitions [J]. Journal of Applied Physics, 2008, 51(5): 2581–2585. doi: 10.1063/1.327984 [15] ITO E, KATSURA T, YAMAZAKI D, et al. A new 6-axis apparatus to squeeze the Kawai-cell of sintered diamond cubes [J]. Physics of the Earth and Planetary Interiors, 2009, 174(1): 264–269. doi: 10.1016/j.pepi.2008.11.007 [16] AMULELE G, KARATO S I, GIRARD J. Melting of bridgmanite under hydrous shallow lower mantle conditions [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(9): e2021JB022222. doi: 10.1029/2021JB022222