铜基稀土过渡金属钙钛矿La1–xNdxCuO3(0≤x≤1)的高压合成

孙浩 叶鹏达 刘雨微 金美玲 李翔

孙浩, 叶鹏达, 刘雨微, 金美玲, 李翔. 铜基稀土过渡金属钙钛矿La1–xNdxCuO3(0≤x≤1)的高压合成[J]. 高压物理学报, 2024, 38(1): 010104. doi: 10.11858/gywlxb.20230784
引用本文: 孙浩, 叶鹏达, 刘雨微, 金美玲, 李翔. 铜基稀土过渡金属钙钛矿La1–xNdxCuO3(0≤x≤1)的高压合成[J]. 高压物理学报, 2024, 38(1): 010104. doi: 10.11858/gywlxb.20230784
SUN Hao, YE Pengda, LIU Yuwei, JIN Meiling, LI Xiang. High-Pressure Synthesis of Copper-Based Rare-Earth Perovskite La1–xNdxCuO3 (0≤x≤1)[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 010104. doi: 10.11858/gywlxb.20230784
Citation: SUN Hao, YE Pengda, LIU Yuwei, JIN Meiling, LI Xiang. High-Pressure Synthesis of Copper-Based Rare-Earth Perovskite La1–xNdxCuO3 (0≤x≤1)[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 010104. doi: 10.11858/gywlxb.20230784

铜基稀土过渡金属钙钛矿La1–xNdxCuO3(0≤x≤1)的高压合成

doi: 10.11858/gywlxb.20230784
基金项目: 国家自然科学基金(12174025,11904020)
详细信息
    作者简介:

    孙 浩(1995-),男,博士研究生,主要从事极端高压条件下凝聚态物理研究. E-mail:haosun@bit.edu.cn

    通讯作者:

    金美玲 (1988-),女,博士,主要从事极端高压条件下凝聚态物理研究. E-mail:jinml@bit.edu.cn

    李 翔(1985-),男,博士,教授,主要从事极端高压条件下凝聚态物理研究. E-mail:xiangli@bit.edu.cn

  • 中图分类号: O521.2

High-Pressure Synthesis of Copper-Based Rare-Earth Perovskite La1–xNdxCuO3 (0≤x≤1)

  • 摘要: 在高温高压条件下,利用自主设计加工的Walker型高压组件合成新型铜基稀土过渡金属钙钛矿La1–xNdxCuO3(0≤x≤1)。结构精修结果表明:La1–xNdxCuO3(0≤x≤0.4)具有菱方结构,空间群为$R\overline 3 c $;当0.5≤x≤0.7时,该体系表现出$R\overline 3 c $菱方结构与Pnma正交结构共存的混合相;进一步增加Nd的掺杂比例,当0.8≤x≤1时样品具有单一的Pnma正交结构。获得了La1–xNdxCuO3(0≤x≤1)的完整结构相图,为深入研究稀土-3d过渡金属氧化物的磁性、金属-绝缘体相变等物性演化规律提供了新的材料选项。

     

  • 图  (a) 高压合成组件侧面图;(b) 高压合成组件剖面图;(c)高压合成组件的校压曲线;(d) 高压合成组件在14 GPa下的标温曲线

    Figure  1.  (a) Side view of the high-pressure assembly; (b) sectional drawing of the high-pressure assembly; (c) pressure calibration of high-pressure assembly; (d) temperature calibration of high-pressure assembly under 14 GPa

    图  (a) LaCuO3、(b) La0.5Nd0.5CuO3、(c) La0.2Nd0.8CuO3和(d) NdCuO3 的PXRD Rietveld 精修谱图

    Figure  2.  Rietveld refinement of PXRD patterns of (a) LaCuO3, (b) La0.5Nd0.5CuO3, (c) La0.2Nd0.8CuO3 and (d) NdCuO3

    图  La1–xNdxCuO3(0≤x≤1)的结构相图

    Figure  3.  Structural phase diagram of La1–xNdxCuO3 (0≤x≤1)

    表  1  La1–xNdxCuO3 (0≤x≤1)样品合成的压力和温度优化条件

    Table  1.   Pressure and temperature conditions of synthesizing La1–xNdxCuO3 (0≤x≤1)

    SamplePressure/GPaTemperature/℃Time/min
    LaCuO36100030
    La0.9Nd0.1CuO36100030
    La0.8Nd0.2CuO36100030
    La0.7Nd0.3CuO310100030
    La0.6Nd0.4CuO310100030
    La0.5Nd0.5CuO310100030
    La0.4Nd0.6CuO310100030
    La0.3Nd0.7CuO314100030
    La0.2Nd0.8CuO314100030
    La0.1Nd0.9CuO314100030
    NdCuO314100030
    下载: 导出CSV

    表  2  La1–xNdxCuO3(0≤x≤1)的晶格参数

    Table  2.   Structural parameters of La1–xNdxCuO3 (0≤x≤1)

    Sample Space group Lattice parameters/Å RP/% RWP/% Chi2
    LaCuO3 $R\overline 3 c $ a=b=5.4976(6), c=13.2062(9) 3.05 5.59 7.01
    La0.9Nd0.1CuO3 $R\overline 3 c $ a=b=5.4976(9), c=13.1917(5) 1.45 1.92 1.10
    La0.8Nd0.2CuO3 $R\overline 3 c $ a=b=5.4988(9), c=13.1732(7) 1.25 1.68 0.79
    La0.7Nd0.3CuO3 $R\overline 3 c $ a=b=5.4961(1), c=13.1625(7) 1.91 2.73 2.48
    La0.6Nd0.4CuO3 $R\overline 3 c $ a=5.4933(9), c=13.1326(6) 2.41 4.14 7.09
    La0.5Nd0.5CuO3 Phase 1: $R\overline 3 c $ (36.43%) a=b=5.4627(1), c=13.2988(9) 4.23 5.85 2.42
    Phase 2: Pnma (63.57%) a=6.1821(1), b=7.3597(8), c=5.4318(7) 4.23 5.85 2.42
    La0.4Nd0.6CuO3 Phase 1: $R\overline 3 c $ (43.49%) a=b=5.4571(7), c=13.2982(1) 1.25 1.68 0.79
    Phase 2: Pnma (56.51%) a=6.5015(2), b=7.6552(6), c=5.3354(4) 1.25 1.68 0.79
    La0.3Nd0.7CuO3 Phase 1: $R\overline 3 c $ (44.42%) a=b=5.4542(6), c=13.3191(9) 3.76 4.81 1.43
    Phase 2: Pnma (55.58%) a=6.3189(6), b=7.2736(7), c=5.3706(8) 3.76 4.81 1.43
    La0.2Nd0.8CuO3 Pnma a=6.3197(8), b=7.2408(1), c=5.3561(1) 7.75 9.92 2.20
    La0.1Nd0.9CuO3 Pnma a=6.3045(3), b=7.2421(7), c=5.3462(9) 1.54 2.24 1.66
    NdCuO3 Pnma a=6.3039(2), b=7.2176(2), c=5.3334(5) 1.72 2.48 1.42
    下载: 导出CSV
  • [1] FIEBIG M, LOTTERMOSER T, FRÖHLICH D, et al. Observation of coupled magnetic and electric domains [J]. Nature, 2002, 419(6909): 818–820. doi: 10.1038/nature01077
    [2] WU J G, WANG J. Multiferroic behavior of BiFeO3–RTiO3 (Mg, Sr, Ca, Ba, and Pb) thin films [J]. Journal of Applied Physics, 2010, 108(2): 026101. doi: 10.1063/1.3452324
    [3] DONG S, YU R, YUNOKI S, et al. Double-exchange model study of multiferroic RMnO3 perovskites [J]. The European Physical Journal B, 2009, 71(3): 339–344. doi: 10.1140/epjb/e2009-00225-1
    [4] KHARE N. Handbook of high-temperature superconductor electronics [M]. New York: Marcel Dekker, 2003.
    [5] VON HELMOLT R, WECKER J, HOLZAPFEL B, et al. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnO x ferromagnetic films [J]. Physical Review Letters, 1993, 71(14): 2331–2333. doi: 10.1103/PhysRevLett.71.2331
    [6] GOODENOUGH J B, ZHOU J S. Orbital ordering in orthorhombic perovskites [J]. Journal of Materials Chemistry, 2007, 17(23): 2394–2405. doi: 10.1039/b701805c
    [7] MARTÍNEZ-LOPE M J, ALONSO J A, RETUERTO M, et al. Evolution of the crystal structure of RVO3 (R=La, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu, Y) perovskites from neutron powder diffraction data [J]. Inorganic Chemistry, 2008, 47(7): 2634–2640. doi: 10.1021/ic701969q
    [8] KUMARI S, PAUL S, RAJ S. Electronic structure of RVO3 (R=La and Y): effect of electron ( U) and exchange ( J) correlations [J]. Solid State Communications, 2017, 268: 20–25. doi: 10.1016/j.ssc.2017.09.017
    [9] SAGE M H. Orbital, charge and magnetic order of RVO3 perovskites [D]. Groningen: University of Groningen, 2006.
    [10] SINGH K D, PANDIT R, KUMAR R. Effect of rare earth ions on structural and optical properties of specific perovskite orthochromates; RCrO3 (R=La, Nd, Eu, Gd, Dy, and Y) [J]. Solid State Sciences, 2018, 85: 70–75. doi: 10.1016/j.solidstatesciences.2018.10.001
    [11] ZVEZDIN A K, GAREEVA Z V, CHEN X M. Multiferroic order parameters in rhombic antiferromagnets RCrO3 [J]. Journal of Physics: Condensed Matter, 2021, 33(38): 385801. doi: 10.1088/1361-648X/ac0dd6
    [12] SIBANDA E T. Structural, magnetic and electronic properties of rare-earth based chromium oxides [D]. Johannesburg: University of Johannesburg, 2023.
    [13] ALONSO J A, MARTÍNEZ-LOPE M J, CASAIS M T, et al. Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R=Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study [J]. Inorganic Chemistry, 2000, 39(5): 917–923. doi: 10.1021/ic990921e
    [14] KAJIMOTO R, MOCHIZUKI H, YOSHIZAWA H, et al. R-dependence of spin exchange interactions in RMnO3 (R=rare-earth ions) [J]. Journal of the Physical Society of Japan, 2005, 74(9): 2430–2433. doi: 10.1143/JPSJ.74.2430
    [15] WARSHI M K, MISHRA V, SAGDEO A, et al. Structural, optical and electronic properties of RFeO3 [J]. Ceramics International, 2018, 44(7): 8344–8349. doi: 10.1016/j.ceramint.2018.02.023
    [16] NAKHAEI M, KHOSHNOUD D S. Structural, magnetic, and electrical properties of RFeO3 (R=Dy, Ho, Yb & Lu) compounds [J]. Journal of Materials Science: Materials in Electronics, 2021, 32(11): 14286–14300. doi: 10.1007/s10854-021-05992-6
    [17] SINGH N, RHEE J Y, AULUCK S. Electronic and magneto-optical properties of rare-earth orthoferrites RFeO3 (R= Y, Sm, Eu, Gd and Lu) [J]. Journal of the Korean Physical Society, 2008, 53(2): 806–811. doi: 10.3938/jkps.53.806
    [18] ALONSO J A, MARTíNEZ-LOPE M J, DE LA CALLE C, et al. Preparation and structural study from neutron diffraction data of RCoO3 (R=Pr, Tb, Dy, Ho, Er, Tm, Yb, Lu) perovskites [J]. Journal of Materials Chemistry, 2006, 16(16): 1555–1560. doi: 10.1039/B515607F
    [19] ITOH M, HASHIMOTO J, YAMAGUCHI S, et al. Spin state and metal-insulator transition in LaCoO3 and RCoO3 (R=Nd, Sm and Eu) [J]. Physica B: Condensed Matter, 2000, 281/282: 510–511. doi: 10.1016/S0921-4526(99)01044-3
    [20] WANG W R, XU D P, SU W H, et al. Raman active phonons in RCoO3 (R=La, Ce, Pr, Nd, Sm, Eu, Gd, and Dy) perovskites [J]. Chinese Physics Letters, 2005, 22(9): 2400. doi: 10.1088/0256-307X/22/9/072
    [21] ZHOU J S, GOODENOUGH J B, DABROWSKI B. Exchange interaction in the insulating phase of RNiO3 [J]. Physical Review Letters, 2005, 95(12): 127204. doi: 10.1103/PhysRevLett.95.127204
    [22] FERNÁNDEZ-DÍAZ M, ALONSO J A, MARTÍNEZ-LOPE M, et al. Charge disproportionation in RNiO3 perovskites [J]. Physica B: Condensed Matter, 2000, 276/278: 218–221. doi: 10.1016/S0921-4526(99)01416-7
    [23] FREELAND J W, VAN VEENENDAAL M, CHAKHALIAN J. Evolution of electronic structure across the rare-earth RNiO3 series [J]. Journal of Electron Spectroscopy and Related Phenomena, 2016, 208: 56–62. doi: 10.1016/j.elspec.2015.07.006
    [24] KARPPINEN M, YAMAUCHI H, ITO T, et al. High-pressure synthesis and thermal decomposition of LaCuO3 [J]. Materials Science and Engineering: B, 1996, 41(1): 59–62. doi: 10.1016/S0921-5107(96)01624-8
    [25] ZHOU J S, ARCHIBALD W, GOODENOUGH J B. Approach to Curie-Weiss paramagnetism in the metallic perovskites La1– x Nd x CuO3 [J]. Physical Review B, 2000, 61(5): 3196–3199. doi: 10.1103/PhysRevB.61.3196
    [26] CHEN B H, WALKER D, SUARD E, et al. High pressure synthesis of NdCuO3– δ perovskites (0≤ δ≤0.5) [J]. Inorganic Chemistry, 1995, 34(8): 2077–2083. doi: 10.1021/ic00112a020
    [27] YU J B, LI Z H, SU W K. Synthesis of quinolines by N-Deformylation and aromatization via solvent-free, high-speed ball milling [J]. Synthetic Communications, 2013, 43(3): 361–374. doi: 10.1080/00397911.2011.599103
    [28] XU W H, LI C Y. Efficient synthesis of cucurbiturils and their derivatives using mechanochemical high-speed ball milling (HSBM) [J]. High Performance Polymers, 2021, 33(5): 509–518. doi: 10.1177/0954008320967057
    [29] HOSSEINI S G, POURMORTAZAVI S M, HAJIMIRSADEGHI S S. Thermal decomposition of pyrotechnic mixtures containing sucrose with either potassium chlorate or potassium perchlorate [J]. Combustion and Flame, 2005, 141(3): 322–326. doi: 10.1016/j.combustflame.2005.01.002
    [30] HUSBAND R J, O’BANNON E F, LIERMANN H P, et al. Compression-rate dependence of pressure-induced phase transitions in Bi [J]. Scientific Reports, 2021, 11(1): 14859. doi: 10.1038/s41598-021-94260-y
    [31] SOYKAN C, ÖZDEMIR KART S. Structural, mechanical and electronic properties of ZnTe polymorphs under pressure [J]. Journal of Alloys and Compounds, 2012, 529: 148–157. doi: 10.1016/j.jallcom.2012.02.170
    [32] CHEN X R, LI X F, CAI L C, et al. Pressure induced phase transition in ZnS [J]. Solid State Communications, 2006, 139(5): 246–249. doi: 10.1016/j.ssc.2006.05.043
    [33] SUZUKI T, YAGI T, AKIMOTO S. Precise determination of transition pressure of GaAs [C]//22nd High Pressure Conference. 1981.
    [34] CHENG J G, ISHII T, KOJITANI H, et al. High-pressure synthesis of the BaIrO3 perovskite: a Pauli paramagnetic metal with a Fermi liquid ground state [J]. Physical Review B, 2013, 88(20): 205114. doi: 10.1103/PhysRevB.88.205114
    [35] YOUNG R A. The Rietveld method [M]. Oxford: International Union of Crystallography, 1993.
    [36] BRINGLEY J F, SCOTT B A, LA PLACA S J, et al. Structure and properties of the LaCuO3– δ perovskites [J]. Physical Review B, 1993, 47(22): 15269. doi: 10.1103/PhysRevB.47.15269
    [37] ZHOU J S, GOODENOUGH J B, DABROWSKI B. Transition from Curie-Weiss to enhanced Pauli paramagnetism in RNiO3 (R=La, Pr, … Gd) [J]. Physical Review B, 2003, 67(2): 020404. doi: 10.1103/PhysRevB.67.020404
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  36
  • PDF下载量:  37
出版历程
  • 收稿日期:  2023-11-08
  • 修回日期:  2023-12-30
  • 录用日期:  2024-01-02
  • 刊出日期:  2024-02-05

目录

    /

    返回文章
    返回