相场模拟研究AZ31B镁合金的动态再结晶

许可 盛杰 刘瑜 黄厚兵 施小明 宋海峰

许可, 盛杰, 刘瑜, 黄厚兵, 施小明, 宋海峰. 相场模拟研究AZ31B镁合金的动态再结晶[J]. 高压物理学报, 2024, 38(3): 030105. doi: 10.11858/gywlxb.20230780
引用本文: 许可, 盛杰, 刘瑜, 黄厚兵, 施小明, 宋海峰. 相场模拟研究AZ31B镁合金的动态再结晶[J]. 高压物理学报, 2024, 38(3): 030105. doi: 10.11858/gywlxb.20230780
XU Ke, SHENG Jie, LIU Yu, HUANG Houbing, SHI Xiaoming, SONG Haifeng. Insight into Dynamic Recrystallization of AZ31B Magnesium Alloys by Phase-Field Simulations[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030105. doi: 10.11858/gywlxb.20230780
Citation: XU Ke, SHENG Jie, LIU Yu, HUANG Houbing, SHI Xiaoming, SONG Haifeng. Insight into Dynamic Recrystallization of AZ31B Magnesium Alloys by Phase-Field Simulations[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030105. doi: 10.11858/gywlxb.20230780

相场模拟研究AZ31B镁合金的动态再结晶

doi: 10.11858/gywlxb.20230780
基金项目: 国家科技部重点研发计划(2021YFB3501503);国家自然科学基金(U2230401);计算物理全国重点实验室基金
详细信息
    作者简介:

    许 可(1996-),男,博士研究生,主要从事镁合金动态加载的相场模拟研究. E-mail:xukebit@qq.com

    通讯作者:

    刘 瑜(1985-),男,博士,副研究员,博士生导师,主要从事高压物理、凝聚态物理、材料物理相关的理论研究. E-mail:liu_yu@iapcm.ac.cn

  • 中图分类号: O521.2; O347.3

Insight into Dynamic Recrystallization of AZ31B Magnesium Alloys by Phase-Field Simulations

  • 摘要: 镁合金被广泛应用于材料科学、航空航天及军事装备等领域。实验发现,镁合金材料在动态加载下的力学响应与介观尺度不连续动态再结晶紧密相关。为此,构建了镁合金动态再结晶的相场模型,以AZ31B镁合金为研究对象,模拟了不同温度(250~400 ℃)、低应变率(0.01~1.00 s−1)加载下的不连续动态再结晶演化过程。再结晶相场模型耦合了塑性应变,实现了应力-应变曲线与再结晶组织演化的迭代求解。模拟发现,再结晶晶粒的体积分数和平均晶粒尺寸随温度的升高而明显增大,随应变率的增大而减小。

     

  • 图  初始多晶与再结晶晶粒序参量构造示意图[25]

    Figure  1.  Schematic diagram of the order parameter configuration of initial polycrystalline and recrystallized grains[25]

    图  动态再结晶本构模型构造示意图

    Figure  2.  Schematic diagram of the constitutive model of dynamic recrystallization

    图  AZ31B镁合金多晶在300 ℃、不同应变率动态加载下的微观组织(序参量η)演化

    Figure  3.  Microstructure (η) evolution of AZ31B magnesium alloy polycrystal under dynamic loading at a temperature of 300 °C and different strain rates

    图  AZ31B镁合金多晶在应变率为1.00 s−1、不同温度动态加载下的微观组织(序参量η)演化

    Figure  4.  Microstructure (η) evolution of AZ31B magnesium alloy polycrystal under dynamic loading at a strain rate of 1.00 s−1 and different temperatures

    图  动态再结晶体积分数与(a)温度和(b)应变率的关系以及再结晶平均晶粒尺寸随应变的演化与(c)温度和(d)应变率的关系

    Figure  5.  Recrystallization volume fraction of dynamic recrystallization versus (a) temperature and (b) strain rate, and the evolution of average grain size with strain versus (c) temperature and (d) strain rate

    图  动态再结晶关于形核率$ \dot{n} $与晶界迁移速率Mgb的平均晶粒尺寸相图(形核速率和晶界迁移速率均采用真实数值)

    Figure  6.  Phase diagram of the average grain size of dynamic recrystallization with respect to the nucleation rate ($ \dot{n} $) versus the grain boundary migration rate Mgb, where real values are used for both the nucleation rate and the grain boundary migration rate

    图  AZ31B镁合金在动态加载下的应力-应变曲线(实线为实验测量数据[27],样条为相场模拟结果)

    Figure  7.  Stress-strain curves of AZ31B magnesium alloy under dynamic loading (The solid lines represent the experimental data[27], and the splines represent the phase field simulation results)

    表  1  AZ31B镁合金的相场模型参数[23, 26]

    Table  1.   Model parameters for phase-field simulation of AZ31B magnesium alloy[23, 26]

    α μ/GPa b/m Qdrx/(kJ·mol−1) Qself/(kJ·mol−1)
    0.5 17.0 3.2×10−10 158.7 156.2
    γgb/(J·m−2) Dgb/(m2·s−1) q kB/(J·K−1) R/(J·mol−1·K−1)
    0.55 3.2×10−8 0.634 1.38×10−12 8.314
    下载: 导出CSV

    表  2  AZ31B镁合金的相场模拟初始化参数[23]

    Table  2.   Initialization parameters for phase-field simulation of AZ31B magnesium alloy[23]

    Wgb/μm Δε εend Ng T/℃ $ \dot{\varepsilon }/{\mathrm{s}} $−1
    1.0 0.001 1.0 9 250−400 0.01−1.00
    下载: 导出CSV

    表  3  相场模拟使用的力学本构参数[2627]

    Table  3.   Constitutive parameters used for phase-field simulations[2627]

    T/℃ $ \dot{\varepsilon }/{\mathrm{s}} $−1 σsat/MPa σss/MPa Ω εcrit
    250 1.00 187 130 26.35 0.320
    300 0.01 87 59 42.31 0.093
    300 0.10 117 75 31.97 0.112
    300 1.00 155 77 28.07 0.180
    350 1.00 116 65 30.44 0.110
    400 1.00 86 61 39.65 0.200
    下载: 导出CSV
  • [1] 谭叶, 肖元陆, 薛桃, 等. 镁铝合金的冲击熔化行为实验研究 [J]. 高压物理学报, 2019, 33(2): 020106. doi: 10.11858/gywlxb.20190729

    TAN Y, XIAO Y L, XUE T, et al. Melting of MB2 alloy under shock compression [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020106. doi: 10.11858/gywlxb.20190729
    [2] 李定远, 朱志武, 卢也森. 冲击加载下42CrMo钢的动态力学性能及其本构关系 [J]. 高压物理学报, 2017, 31(6): 761–768. doi: 10.11858/gywlxb.2017.06.011

    LI D Y, ZHU Z W, LU Y S. Mechanical properties and constitutive relation for 42CrMo steel under impact load [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 761–768. doi: 10.11858/gywlxb.2017.06.011
    [3] 潘建华, 陈学东, 姜恒, 等. 准静态和动态加载对裂纹扩展阻力曲线的影响及其关系的研究 [J]. 高压物理学报, 2015, 29(2): 109–116. doi: 10.11858/gywlxb.2015.02.004

    PAN J H, CHEN X D, JIANG H, et al. Loading rate effect on crack resistance curves and their correlations [J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 109–116. doi: 10.11858/gywlxb.2015.02.004
    [4] MALIK A, WANG Y W, CHENG H W, et al. Post deformation analysis of the ballistic impacted magnesium alloys, a short-review [J]. Journal of Magnesium and Alloys, 2021, 9(5): 1505–1520. doi: 10.1016/j.jma.2020.07.011
    [5] MEDVEDEV A E, MACONACHIE T, LEARY M, et al. Perspectives on additive manufacturing for dynamic impact applications [J]. Materials & Design, 2022, 221: 110963. doi: 10.1016/j.matdes.2022.110963
    [6] NAZEER F, LONG J Y, YANG Z, et al. Superplastic deformation behavior of Mg alloys: a-review [J]. Journal of Magnesium and Alloys, 2022, 10(1): 97–109. doi: 10.1016/j.jma.2021.07.012
    [7] XU W L, YU J M, JIA L C, et al. Deformation behavior of Mg-13Gd-4Y-2Zn-0.5Zr alloy on the basis of LPSO kinking, dynamic recrystallization and twinning during compression-torsion [J]. Materials Characterization, 2021, 178: 111215. doi: 10.1016/j.matchar.2021.111215
    [8] MALIK A, NAZEER F, NAQVI S Z H, et al. Microstructure feathers and ASB susceptibility under dynamic compression and its correlation with the ballistic impact of Mg alloys [J]. Journal of Materials Research and Technology, 2022, 16: 801–813. doi: 10.1016/j.jmrt.2021.12.051
    [9] MALIK A, WANG Y W. A short review on high strain rate superplasticity in magnesium-based composites materials [J]. International Journal of Lightweight Materials and Manufacture, 2023, 6(2): 214–224. doi: 10.1016/j.ijlmm.2022.10.004
    [10] HE M F, CHEN L X, YIN M, et al. Review on magnesium and magnesium-based alloys as biomaterials for bone immobilization [J]. Journal of Materials Research and Technology, 2023, 23: 4396–4419. doi: 10.1016/j.jmrt.2023.02.037
    [11] DONG J H, LIN T, SHAO H P, et al. Advances in degradation behavior of biomedical magnesium alloys: a review [J]. Journal of Alloys and Compounds, 2022, 908: 164600. doi: 10.1016/j.jallcom.2022.164600
    [12] 苏磊, 杨国强. 动态压力加载/卸载装置dDAC及原位表征技术研究进展 [J]. 高压物理学报, 2021, 35(6): 060102. doi: 10.11858/gywlxb.20210505

    SU L, YANG G Q. Research progress of dynamic pressure loading/unloading device and in-situ characterization technology [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 060102. doi: 10.11858/gywlxb.20210505
    [13] GOETZ R L, SEETHARAMAN V. Modeling dynamic recrystallization using cellular automata [J]. Scripta Materialia, 1998, 38(3): 405–413. doi: 10.1016/S1359-6462(97)00500-9
    [14] JONAS J J, QUELENNEC X, JIANG L, et al. The Avrami kinetics of dynamic recrystallization [J]. Acta Materialia, 2009, 57(9): 2748–2756. doi: 10.1016/j.actamat.2009.02.033
    [15] KUBIN L P, CANOVA G, CONDAT M, et al. Dislocation microstructures and plastic flow: a 3D simulation [J]. Solid State Phenomena, 1992, 23/24: 455–472. doi: 10.4028/www.scientific.net/SSP.23-24.455
    [16] MA A, ROTERS F. A constitutive model for fcc single crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals [J]. Acta Materialia, 2004, 52(12): 3603–3612. doi: 10.1016/j.actamat.2004.04.012
    [17] MA A, ROTERS F, RAABE D. A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations [J]. Acta Materialia, 2006, 54(8): 2169–2179. doi: 10.1016/j.actamat.2006.01.005
    [18] PÉREZ-PRADO M T, DEL VALLE J A, CONTRERAS J M, et al. Microstructural evolution during large strain hot rolling of an AM60 Mg alloy [J]. Scripta Materialia, 2004, 50(5): 661–665. doi: 10.1016/j.scriptamat.2003.11.014
    [19] SAKAI T, BELYAKOV A, KAIBYSHEV R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions [J]. Progress in Materials Science, 2014, 60: 130–207. doi: 10.1016/j.pmatsci.2013.09.002
    [20] CHEN L Q, YANG W. Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: the grain-growth kinetics [J]. Physical Review B, 1994, 50(21): 15752–15756. doi: 10.1103/PhysRevB.50.15752
    [21] MOELANS N, GODFREY A, ZHANG Y B, et al. Phase-field simulation study of the migration of recrystallization boundaries [J]. Physical Review B, 2013, 88(5): 054103. doi: 10.1103/PhysRevB.88.054103
    [22] ZHAO P Y, SONG EN LOW T, WANG Y Z, et al. An integrated full-field model of concurrent plastic deformation and microstructure evolution: application to 3D simulation of dynamic recrystallization in polycrystalline copper [J]. International Journal of Plasticity, 2016, 80: 38–55. doi: 10.1016/j.ijplas.2015.12.010
    [23] CAI Y, SUN C Y, LI Y L, et al. Phase field modeling of discontinuous dynamic recrystallization in hot deformation of magnesium alloys [J]. International Journal of Plasticity, 2020, 133: 102773. doi: 10.1016/j.ijplas.2020.102773
    [24] 姚松林, 裴晓阳, 于继东, 等. 基于位错动力学方法的动态塑性变形研究 [J]. 高压物理学报, 2019, 33(3): 030107. doi: 10.11858/gywlxb.20190727

    YAO S L, PEI X Y, YU J D, et al. Overview of the study of dynamical plastic deformation based on dislocation dynamics method [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030107. doi: 10.11858/gywlxb.20190727
    [25] 许可. 相场模拟多物理场调控镁合金不连续动态再结晶 [D]. 北京: 北京理工大学, 2023.

    XU K. Multi-physics-field manipulating discontinuous dynamic recrystallization in magnesium alloys via phase-field simulations [D]. Beijing: Beijing Institute of Technology, 2023.
    [26] CHEN M S, YUAN W Q, LI H B, et al. Modeling and simulation of dynamic recrystallization behaviors of magnesium alloy AZ31B using cellular automaton method [J]. Computational Materials Science, 2017, 136: 163–172. doi: 10.1016/j.commatsci.2017.05.009
    [27] LIU J, CUI Z, RUAN L. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B [J]. Materials Science and Engineering: A, 2011, 529: 300–310. doi: 10.1016/j.msea.2011.09.032
    [28] LI Y, HOU P J, WU Z G, et al. Dynamic recrystallization of a wrought magnesium alloy: grain size and texture maps and their application for mechanical behavior predictions [J]. Materials & Design, 2021, 202: 109562. doi: 10.1016/j.matdes.2021.109562
    [29] CHEN S F, LI D Y, ZHANG S H, et al. Modelling continuous dynamic recrystallization of aluminum alloys based on the polycrystal plasticity approach [J]. International Journal of Plasticity, 2020, 131: 102710. doi: 10.1016/j.ijplas.2020.102710
    [30] HUANG W Y, CHEN J H, ZHANG R Z, et al. Effect of deformation modes on continuous dynamic recrystallization of extruded AZ31 Mg alloy [J]. Journal of Alloys and Compounds, 2022, 897: 163086. doi: 10.1016/j.jallcom.2021.163086
    [31] LEONARD M, MOUSSA C, ROATTA A, et al. Continuous dynamic recrystallization in a Zn-Cu-Ti sheet subjected to bilinear tensile strain [J]. Materials Science and Engineering: A, 2020, 789: 139689. doi: 10.1016/j.msea.2020.139689
    [32] LIU L, WU Y X, AHMAD A S. A novel simulation of continuous dynamic recrystallization process for 2219 aluminium alloy using cellular automata technique [J]. Materials Science and Engineering: A, 2021, 815: 141256. doi: 10.1016/j.msea.2021.141256
    [33] ZHANG J J, YI Y P, HE H L, et al. Kinetic model for describing continuous and discontinuous dynamic recrystallization behaviors of 2195 aluminum alloy during hot deformation [J]. Materials Characterization, 2021, 181: 111492. doi: 10.1016/j.matchar.2021.111492
    [34] GUO P C, LIU X, ZHU B W, et al. The microstructure evolution and deformation mechanism in a casting AM80 magnesium alloy under ultra-high strain rate loading [J]. Journal of Magnesium and Alloys, 2022, 10(11): 3205–3216. doi: 10.1016/j.jma.2021.07.032
    [35] LI N L, HUANG G J, ZHONG X Y, et al. Deformation mechanisms and dynamic recrystallization of AZ31 Mg alloy with different initial textures during hot tension [J]. Materials & Design, 2013, 50: 382–391. doi: 10.1016/j.matdes.2013.03.028
    [36] POPOVA E, BRAHME A P, STARASELSKI Y, et al. Effect of extension ${ {\text{\{10}}\overline {\text{1}} {\text{2\} }}}$ twins on texture evolution at elevated temperature deformation accompanied by dynamic recrystallization [J]. Materials & Design, 2016, 96: 446–457. doi: 10.1016/j.matdes.2016.02.042
    [37] XIE C, HE J M, ZHU B W, et al. Transition of dynamic recrystallization mechanisms of as-cast AZ31 Mg alloys during hot compression [J]. International Journal of Plasticity, 2018, 111: 211–233. doi: 10.1016/j.ijplas.2018.07.017
    [38] XU S W, KAMADO S, MATSUMOTO N, et al. Recrystallization mechanism of as-cast AZ91 magnesium alloy during hot compressive deformation [J]. Materials Science and Engineering: A, 2009, 527(1/2): 52–60. doi: 10.1016/j.msea.2009.08.062
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  79
  • PDF下载量:  29
出版历程
  • 收稿日期:  2023-11-07
  • 修回日期:  2024-01-19
  • 网络出版日期:  2024-04-03
  • 刊出日期:  2024-06-03

目录

    /

    返回文章
    返回