Recent Progress on Structural and Functional Evolutions of Metal Halide Perovskites under High Pressure
-
摘要: 过去10年里,金属卤素钙钛矿作为一种性能优异的新型功能材料被广泛应用,其研究取得了很多重要进展。压力作为一个基本的热力学变量,可以显著地影响材料的微观结构、原子间相互作用、电子轨道和化学键,是调节材料结构和性能的一个强大工具。与此同时,压力也为研究结构与性质之间的关系提供了新路径。结合金刚石对顶砧高压装置以及原位高压表征技术,总结了金属卤素钙钛矿在高压下的结构及性质变化,包括高压驱动结构相变,有序-无序转变,非晶化,局部结构演化,带隙、光致发光、光响应、电阻等性质在压力作用下的变化,以及高压下特有的奇特性质如金属化转变,系统分析了此类材料的结构-性质关系,并对未来的新型材料设计做出了展望。Abstract: Over the past decade, metal halide perovskites have been widely employed as the emerging active-materials for technological innovations, and their research has become one of the central goals in the field of energetic materials. Pressure, a new thermodynamic dimension, can tune microstructure, atomic interactions, electronic orbitals, and chemical bonds of materials, thus serves as a potent means to regulate the structures and properties of metal halide perovskites. In addition, pressure paves a novel avenue for probing and understanding the structure-property relationship. Taking the advantage of diamond anvil cell technology and in situ high-pressure characterization techniques, we have comprehensively summarized the pressure-induced evolutions of metal halide perovskites, encompassing structural phase transitions, order-disorder transitions, amorphization, and local structural evolution. We have examined alterations in properties, such as bandgap, photoluminescence, photoelectronic response, and electrical resistance, and other distinctive high-pressure phenomena. This review systematically analyzes the structure-property interplay within these known materials, and offers insights into the design of future novel materials.
-
Key words:
- high-pressure /
- metal halide perovskite /
- structural evolution /
- semiconductor /
- diamond anvil cell
-
高速气体和固体颗粒群的相互作用是一类典型的可压缩多相流问题,广泛存在于天文、自然灾害、工业安全、医疗工业和国防等领域,如超新星爆炸[1]、火山爆发[2]、粉尘爆炸[3]、无针注射[4]和炸弹爆炸[5]等。在高速颗粒流中,颗粒体积分数αd是一个重要参数[6]。当αd
≪1 时,颗粒之间彼此远离,颗粒间的碰撞效应可以忽略不计[7];当αd ≥ 0.5时,颗粒之间彼此靠近,颗粒间的碰撞是其运动的主要机制,流体对固体颗粒的作用可以忽略不计[8]。本研究的固体体积分数为15%,属于0.001 < αd < 0.5范围[8],此时流体与颗粒的相互作用以及颗粒之间的相互作用变得尤为重要[9-10]。在物理实验方面,Rogue等[11]在垂直激波管中进行了激波与水平颗粒床相互作用的实验。Wagner等[12]使用多相流激波管(Multiphase shock tube, MST)对激波与颗粒帘的相互作用进行实验研究,观察到反射激波和透射激波的产生和传播,以及颗粒帘宽度扩张和传播过程。Wagner等[13]利用X射线测量技术改进了激波管,以观察在整个实验过程中颗粒帘内部体积分数的分布变化。Theofanous等[14-15]使用ASOS激波管研究激波与颗粒帘的相互作用,发现了此类实验中存在时间标度(Time scaling)现象,进而总结出颗粒帘宽度在实验前期加速扩张、实验后期匀速扩张的规律。
在数值模拟方面,研究颗粒流的常用方法有点颗粒模型法[16-17]和直接数值模拟(Direct numerical simulation, DNS)方法,DNS方法又包括基于网格重构的拉格朗日-欧拉移动网格法(Arbitray Lagrangian-Eulerian, ALE)[18]和浸入边界法(Immersed boundary method, IBM)[19–21]等。Zhu等[22]使用界面解析的DNS方法研究了不同形状(椭球和圆球)的颗粒在湍流通道中的流动。Zastawny等[23]使用改进的镜像浸入边界法进行DNS,推导了流动中4种非球形颗粒的阻力和升力系数以及扭矩系数。邹立勇等[24]实验研究了在马赫数为1.18的平面激波冲击作用下,双椭圆界面R-M不稳定性演化的动力学过程。2018年Jiang等[25]基于分层流模型[26-27]在笛卡尔背景网格下,进行了高速气体与二维圆柱云相互作用前期的系统性数值模拟,并对高速气体与三维圆球云的数值模拟进行了初步探究。Deng等[28]进一步探讨了高速气体与三维圆球云相互作用后期的相关规律,发现了与Theofanous等[14-15]实验中获得的时间标度类似的现象。
本研究基于分层流模型[26-27],在前人[25, 28]的基础上拓展研究,对平面激波与椭圆柱云的相互作用进行DNS,重点关注椭圆柱横截面不同长短轴之比(λ)以及椭圆柱横截面长轴与来流方向成不同角度(θ)时对流场的影响程度。图1为椭圆柱横截面几何示意图,其中a为椭圆柱横截面长轴长,b为椭圆柱横截面短轴长,λ = a/b表示长短轴之比,θ表示x轴(流场来流方向)与长轴之间的夹角。
1. 数值方法
本研究采用的数值方法是基于Chang和Liou[27]提出的分层流模型,其控制方程如下
{∂∂t∫VgρgdVg+∮Sg(ρgvg)⋅ndSg=0∂∂t∫VgρgvgdVg+∮Sg(ρgvgvg)⋅ndSg+∮SgpndSg=0∂∂t∫VgρgEgdVg+∫Vp∂αg∂tdV+∮Sg(ρgHgvg)⋅ndSg=0 (1) 式中:下标“g”表示气相;ρ为密度;v为速度矢量;n为控制体边界的单位外法向量;p为压力;E和H分别为每个控制体的总能量和总焓;Sg为控制体中气体相的表面积;Vg = αgVi,其中Vg为控制体中的气相体积,αg为气体的体积分数,Vi为控制体的体积。应用理想气体状态方程来封闭式(1)。采用有限体积法(Finite volume method, FVM)离散控制方程,空间重构使用三阶TVD格式,由于不同控制体的体积分数αg不都相同,每个控制体界面可以重构为气-气、固-固和气-固3个部分,如图2所示。其中气-气界面之间的通量使用AUSM+-up近似黎曼解法器[27, 29-30]计算,时间推进采用三阶龙格库塔(Runge-Kutta)方法,计算网格使用笛卡尔网格。本研究主要针对激波与椭圆柱云相互作用的前期阶段,可认为此时椭圆柱固定不动。由于流场的流速较高,因此椭圆柱所受的合外力仅通过圆柱表面对压力积分获得,而忽略流体黏性对椭圆柱受力的影响。气-固界面采用滑移边界条件。使用MPI实现并行计算,以便进行大规模数值模拟。
Figure 2. Illustration of the stratified flow model[25] (Where i –1, i and i + 1 are the indexes of the cell.¯ab and¯ef are the interfaces between the gas phases,¯bc and¯fg are the interfaces between the gas phase and solid phase,¯cd and¯gh are the interfaces between the solid phases.)2. 平面激波与椭圆柱云相互作用研究
2.1 方法验证
通过测试网格的收敛性检验本方法的正确性。采用4种不同分辨率的网格进行数值模拟。表1列出了不同分辨率下x和y方向上的网格数Nx和Ny,以及解析椭圆短轴所使用的网格数nb,计算区域设置见图3(a)。椭圆圆心位于原点
(0,0) 处,入射激波位于x = –0.04处,计算域为x∈[–0.140,0.140],y∈[–0.084,0.084],z∈[–0.020,0.020]。为了节省计算资源,当x∈[–0.056,0.056]且y∈[–0.028,0.028]时,网格间距是均匀的,且在该区域Δx = Δy;除此之外,x和y方向采用不等间距的拉伸网格,z方向上的均匀网格个数设置为2,且该方向上两侧为周期性边界条件。图3(a)的上下边界条件为周期性边界条件,左边界为入口边界条件,右边界为出口边界条件,入口边界和出口边界都按照气体的初始条件设置为固定值。气体初始条件为:波前(p, T, u)R = (8.234 9 × 104 Pa, 294.9 K, 0.0 m/s),波后(p, T, u)L = (2.548 9 × 105 Pa, 425.2 K, 309.1 m/s)。表 1 网格收敛性分析实验中使用的4种网格Table 1. Four meshes used in the convergence analysis experimentMesh nb Nx Ny 1 8 112 64 2 16 224 128 3 32 448 256 4 64 896 512 在此初始条件下可以产生马赫数Ma = 1.67的运动激波。图3(b)显示了网格收敛性的数值模拟结果,主要考察了x方向上椭圆柱所受的外力Fx随时间的演化规律。从图3(b)中可以看出:随着nb的增加,数值模拟结果显示出很好的收敛性,且当nb = 32时,数值模拟结果与nb = 64时的结果吻合很好。因此,以下均使用nb = 32的网格进行DNS。
2.2 直接数值模拟
设入射激波马赫数Ma = 1.67,气体初始条件与2.1节中的初始条件相同,网格分辨率nb取为32。初始流场设置见图4,入射激波位于x = –2.5,计算域为x∈[–3.0,4.0],y∈[–0.5,0.5],z∈[–0.1,0.0]。为了节省计算资源,当x∈[–0.65,0.65]时,采用等间距网格,除此之外,x方向采用拉伸网格,y方向采用均匀网格,z方向上的网格个数设置为1。椭圆柱云位于x∈[–0.5,0.5]区域,其宽度L = 1。椭圆柱个数Np = 440,椭圆柱的横截面积均相同,其排布参照Jiang等[25]的排布方案。表2列出了λ为2、3和4时网格的设置,a为椭圆柱横截面长轴长,b为椭圆柱横截面短轴长,Δx为均匀网格区域网格的宽度,Nx和Ny分别表示x和y方向上的网格总数,N为整个计算区域内的网格总数。
表 2 平面激波与椭圆柱云相互作用数值模拟使用的网格设置Table 2. Mesh settings in numerical simulation of the interaction between plane shock and elliptical column cloudλ Np a b Δx/10–4 Nx Ny N/106 2 440 0.029 44 0.014 72 4.59 3 894 2 176 8.5 3 440 0.036 04 0.012 02 3.75 4 763 2 666 12.7 4 440 0.041 64 0.010 41 3.25 5 500 3 078 16.9 图 4 x-y平面计算区域设置示意图(右图为初始椭圆柱云分布图,蓝色表示低压区域,红色表示高压区域)Figure 4. Illustration of the computational domain setting in the x-y plane (The right plot shows the initial distribution of the elliptical cylinder cloud. The red and blue regions represent the high-pressure and low-pressure regions, respectively.)在数值模拟过程中,可以观察到类似于高速气体与圆柱云相互作用的物理现象[25]。图5显示了当λ = 2、θ = 0°时,无量纲时间t为1.3、1.5、1.8、2.4和3.5时流场中的压强分布,其中压强采用初始时刻波前压强(8.234 9×104 Pa)进行了无量纲化处理。从图5中可以看出:在激波与椭圆柱云相互作用的过程中产生了一道向流场上游运动的反射激波和一道向流场下游运动的透射激波;当无量纲时间为2.4和3.5时,在椭圆柱云内部和流场下游部分区域流场扰动较大,原因是此区域存在激波的反射以及激波之间的相互作用。
为了定量分析流场,先给出本研究所涉及的部分变量的定义[8],变量
ϕ 的体积平均可以定义为ˉϕ≡1V∫VϕdV (2) 式中:V为连续相和离散相的总体积。连续相的相平均(或雷诺平均)定义为
⟨ϕ⟩≡1Vc∫VcϕdV (3) 式中:Vc为V中连续相的体积。质量平均
˜ϕ 定义为˜ϕ≡¯ρϕˉρ=⟨ρϕ⟩⟨ρ⟩ (4) 均方根(RMS)速度
u″i 定义为u″i≡√~u2i−˜u2i (5) 式中:下标i表示速度的3个方向,
~u2i 表示速度u2i 的质量平均,˜u2i 表示˜ui 的平方。连续相的体积平均后的内能、动能和湍动能的定义[8]分别为Ei=⟨ρc⟩˜e=⟨p⟩γ−1 (6) Ek=⟨ρc⟩˜ui˜ui2 (7) k=⟨ρcu″iu″i⟩2 (8) 为了便于描述,将计算域分为3部分,即上游区域、椭圆柱云区域和下游区域,如图6(e)所示,其中椭圆柱云的边界分为椭圆柱云上游边界(UFC)和椭圆柱云下游边界(DFC)。图6展示了在t = 3.5,λ为2、3、4时,椭圆柱横截面长轴与来流方向呈不同角度时的流场速度(u)、流场内能和流场动能在计算域中沿着
x 方向的分布。从图6中可以看出:随着θ从0°增大到135°,入射激波与椭圆柱云正面冲击的有效面积先增大后减小,椭圆柱云对入射激波的反射效果也先增强后减弱;当θ达到90°时,入射激波与椭圆柱云正面冲击的有效面积最大,椭圆柱云对入射激波的反射效果最强。从图6中来流速度u的分布可以看出,当θ = 90°时,反射激波位置离UFC最远,而透射激波位置离DFC最近。从内能分布图中也可以看出,与其他角度相比,当θ = 90°时,反射激波与UFC之间的区域中的内能相对于初始时刻的内能增加更大,而下游区域中内能增加最小。从动能分布中可以看出,当θ = 90°时,入射激波对下游的影响相比其他角度来说更小,说明流场中的能量更多以内能形式保留在从反射激波面到UFC之间的区域中,而较少输入流场的下游。由于椭圆柱云的分布具有沿中心轴上下近似对称的性质,如图4所示,因此当θ = 45°和135°时,流场中主流速度(u)、内能和动能的分布也具有相似性。图 6 t = 3.5时不同λ下θ分别为0°、45°、90°、135°时的流场速度、流场内能和流场动能分布(灰色矩形区域表示椭圆柱云,RS、TS、UFC、DFC分别表示反射激波、透射激波、椭圆柱云上游边界、椭圆柱云下游边界)Figure 6. Distributions of the fluid velocity, fluid internal energy and fluid kinetic energy with different λ when θ equals to 0°, 45°, 90°, 135° at dimensionless time t = 3.5 (The gray rectangular regions stand for the elliptical cylinder cloud. Hereafter, RS, TS,UFC and DFC mean reflected shock, transmitted shock, the upstream front of elliptical column cloud, and the downstream front of elliptical column cloud, respectively.)图7显示了在无量纲时间t = 3.5且θ不变,λ分别为2、3、4时的主流速度、流场内能和流场动能在x方向上的分布。当θ = 0°时,随着λ从2增加到4,相同面积的椭圆逐渐变得细长,入射激波与椭圆柱云正面冲击的有效面积减小,椭圆柱云对入射激波的反射效果减弱。从图7中来流速度u的分布来看,当θ = 0°、λ = 2时,反射激波间断面离UFC最远,透射激波的间断面离DFC最近。从内能分布图中也可以看出,随着λ的增大,反射激波与UFC之间的区域中的内能相对于初始时刻内能上升的幅度减小,传递到下游的内能相对于初始时刻内能逐渐增加,流场下游区域的内能占流场总内能的比例逐渐增加。从动能分布来看,随着λ的增加,动能整体增加。而当θ = 90°时,随着λ的增大,反射激波与UFC之间的区域中的内能相对于初始时刻内能上升的幅度增加,传递到下游的内能相对于初始时刻内能逐渐减少,流场上游区域中的内能占流场总内能的比例逐渐增加,且此时流场中的动能随着λ的增加而减小,但差别不大。当θ = 45°时,不同的λ下,入射激波与椭圆柱云正面冲击的有效面积差异较小,因此λ的不同对主流速度、流场内能和流场动能的影响较小。
图 7 t = 3.5时不同θ下λ分别为2、3、4时,流场速度、流场内能和流场动能的分布(灰色矩形区域表示椭圆柱云)Figure 7. Distributions of the fluid velocity, fluid internal energy and fluid kinetic energy with different θ, when λ equals to 2, 3, 4, at dimensionless time t = 3.5, where the gray rectangular regions stand for the elliptical cylinder cloud图8显示了在无量纲时间t = 3.5时,相同θ下,当λ从2增加到4,沿x和y方向上的RMS速度(
u″ ,v″ )和湍动能的分布,虚线之间的区域表示椭圆柱云。可以观察到,当θ为0°、45°和135°时,λ的变化对u″ 、v″ 和湍动能分布的影响较小,此时u″ 、v″ 和湍动能数值较大的区域分布在DFC附近。当θ = 90°时,随着λ的增加,u″ 、v″ 和湍动能的分布区域逐渐收窄,此时湍动能数值较大的区域分布在UFC附近。为了探究更详细的规律,需要对流场内能、流场动能和流场湍动能进行定量分析,将计算域
x∈[−3.0,4.0] 分为3部分,分别是计算域上游区域(x∈[−3.0,−0.5] )、椭圆柱云区域(x∈[−0.5,0.5] )和计算域下游区域(x∈[0.5,4.0] ),在每个计算区域内对内能、动能和湍动能进行积分,如图9所示,图中标出了每个区域具体积分值以便分析。图 9 t = 3.5时不同θ和λ下流场内能、流场动能和流场湍动能在计算域上游区域(x∈[−3.0,−0.5] )、椭圆柱云区域(x∈[−0.5,0.5] )和计算域下游区域(x∈[0.5,4.0] )分布Figure 9. Distributions of the fluid internal energy, fluid kinetic energy and fluid turbulent kinetic energy at different θ and λ in three different regions, that is the upstream area of the domainx∈[−3.0,−0.5] , elliptical column cloud areax∈[−0.5,0.5] , the downstream area of the domainx∈[0.5,4.0] at dimensionless time t = 3.5从内能分布来看,对于不同的λ和θ,在上游区域中的内能占整个流场中内能的比例最大。随着λ的增大,主要差异体现在:当θ = 0°时,上游区域内能从23.8减小到20.6;而当θ = 90°时,变化趋势则相反,内能从29.4增加到32.9,同时内能在此区域中的值比其他角度在此区域中的值都大,在椭圆柱云区域,内能从4.2减小到1.9,在下游区域,内能从7.8减小到6.8;当θ = 45°,135°时,在不同λ下,每个区域的内能对λ的变化不敏感。
从动能分布来看,当θ = 0°时,随着λ的增大,动能在上游区域从1.18增加到1.54,在椭圆柱云区域从0.10增加到0.23,在下游区域从0.83增加到1.53;当θ = 90°时,趋势则相反,随着λ的增大,动能在上游区域、椭圆柱云区域和下游区域都逐渐减小;当θ = 45°,135°时,随着λ的增大,动能在3个区域的值缓慢增加。
从湍动能分布来看,当θ处于不同角度下,湍动能在上游的值均很小,主要分布在椭圆柱云区域和下游区域。当θ = 0°, 45°, 135°时,随着λ的增加,湍动能在椭圆柱云区域和下游区域的值都逐渐减小;当θ = 90°时,湍动能主要分布在椭圆柱云区域。
图10展示了流场总内能、流场总动能和流场湍动能在
t∈[1.2,3.5] 的演化过程。因为t∈[0,1.2] 时,流场中的激波未与椭圆柱云相互作用,因此该过程中的能量变化规律并不重要,可以忽略。这里主要讨论当x∈[1.2,3.5] 时3个量的变化。3个量中流场总内能总是随着时间的增加而逐渐增大。当θ = 90°时,流场总内能增长得最快;λ越大,θ越小,流场中总内能增长得越慢;到θ = 0°时,流场总内能增长得最慢。总动能方面,当θ = 0°、λ = 3或者θ = 0°、λ = 4时,计算域中的总动能随时间的增加而逐渐增大,而其他情况下则随时间的增加而逐渐减小。当θ = 90°时,计算域中的总动能减小得较快。就湍动能而言,总体上都随着时间的增加而逐渐增大,而且在相同θ下,λ越小,湍动能越大。综合来看,在相同λ的条件下,当θ = 90°时,入射激波与椭圆柱云正面冲击的有效截面积最大,整个流场中总内能增长得最快,湍动能增长得最慢,而总动能减少得最快。2.3 一维体积平均模型
本节讨论改进Jiang等[25]的一维体积平均模型与DNS的结果对比。改进后的一维体积平均模型的具体形式如下
∂∂t(αc⟨ρ⟩)+∂∂x(αc⟨ρ⟩˜u)=0 (9) ∂∂t(αc⟨ρ⟩˜u)+∂∂x[αc(⟨ρ⟩˜u2+⟨p⟩)]=⟨p⟩∂αc∂x−2√λ2sin2θ+cos2θπaCdαd⟨ρ⟩|˜u|˜u (10) ∂∂t(αc⟨ρ⟩˜eT)+∂∂x(αc⟨ρ⟩˜u˜hT)=0 (11) ⟨ρ⟩˜eT=⟨ρ⟩˜e+12⟨ρ⟩˜u2 (12) ⟨ρ⟩˜hT=⟨ρ⟩˜e+12⟨ρ⟩˜u2+⟨p⟩ (13) 式中:Cd为人工有效阻力系数,αd为固体体积分数。表3给出了在t = 3.5时不同λ和θ下最优Cd的取值,其中θ = 90°时以整体拟合趋势为准,其他角度则以一维体积平均模型的反射激波和透射激波位置与DNS结果的激波位置拟合最优为准。图11展示了λ = 2,3,4,且θ = 0°,45°,90°和135°时的速度分布。从图11中可以看出,一维体积平均模型与当前DNS结果的拟合效果较好。
表 3 人工有效阻力系数Cd的最优取值Table 3. Optimal values of artificial effective drag coefficient Cdλ Cd θ = 0° θ = 15° θ = 30° θ = 45° θ = 60° θ = 90° θ = 135° 2 1.19 1.06 1.06 1.42 2.22 6.00 1.68 3 0.86 0.67 0.69 1.48 2.80 14.00 1.29 4 0.57 0.58 0.47 1.30 3.00 36.00 1.15 利用表3中的数据得到如图12所示的Cd分布。由图12可以看出:
θ∈[0∘,45∘] 时,λ越大,Cd越小;当θ∈[60∘,120∘] 时,λ越大,Cd越大;当θ = 90°时,Cd比相同λ、其他角度下的Cd都要大。在目前拟合的θ 和λ范围内,Cd最小值出现在图12中A处,最大值出现在图12中B处。3. 结 论
研究了不同椭圆柱横截面长短轴之比λ和不同椭圆柱横截面长轴与来流方向所成角度θ对流场的影响,得到如下结论。
(1)在t = 3.5时,保持λ不变,θ从0°增大到90°,激波与椭圆柱云正面冲击的有效横截面积逐渐增大,反射激波的位置逐渐远离椭圆柱云,透射激波的位置逐渐靠近椭圆柱云,此时流场中的能量更多以内能形式保留在从反射激波面到椭圆柱云上边界之间的区域中。
(2)在t = 3.5时,保持θ不变,当θ = 0°时,随着λ从2增大到4,反射激波的位置逐渐靠近椭圆柱云,透射激波的位置逐渐远离椭圆柱云,流场下游区域的内能占流场总内能的比例逐渐增加。θ = 90°时,λ从2增加到4,此时流场上游区域中的内能占流场总内能的比例逐渐增加。θ = 45°的内能分布和动能分布对λ的变化不敏感。
(3)当t = 3.5、θ = 90°时,随着λ的增加,
u″ 、v″ 和湍动能的分布区域逐渐收窄,此时湍动能数值较大的区域分布在椭圆柱云上边界附近。而其他角度下,u″ 、v″ 和湍动能的分布对λ的变化不敏感,且u″ 、v″ 和湍动能数值较大区域分布在椭圆柱云下边界附近。(4)当
t∈[1.2,3.5] 时,流场总内能随时间逐渐增大,相同λ下,当θ = 90°时,流场总内能增长最快,θ = 0°时,流场总内能增长最慢。当θ = 0°、λ = 3或者θ = 0°、λ = 4时,计算域中的总动能随时间的增加而逐渐增大,而其他情况则随时间的增加而逐渐减小。当θ = 90°时,计算域中的总动能减小较快。湍动能随时间的增加而逐渐增大,相同θ下,λ越小,湍动能越大。在相同λ的条件下,当θ = 90°时,动能转换成内能的效率最高。(5)一维体积平均模型在采用合适的有效人工阻力系数Cd时,可以较好地拟合当前DNS结果。
-
图 2 MHPVs中压力驱动的非晶化、有序-无序转变、局部无序:(a) MASnI3在压缩和再压缩时压力驱动的结构演化[25],(b) Cs2AgBiBr6在2.1 GPa时隐藏的局部无序[36]
Figure 2. Pressure-driven amorphous, ordered-disordered transition, local disorder: (a) pressure-driven structural evolution of MASnI3 during compression and recompression in MHPVs[25]; (b) Cs2AgBiBr6 local disorder at 2.1 GPa[36]
图 3 高压实验条件及时间对结构和性能的影响:(a)不同传压介质(pressure-transmitting-medium,PTM)下MAPbBr3在同一压力时的结构[15];高压下MAPbCl3的结构(b)和性能(c)的时间依赖[14]
Figure 3. Effect of high-pressure experimental conditions and time on structure and performance: (a) the structure of MAPbBr3 at the same pressure under different pressure-transmitting-media[15]; time dependence of structure (b) and performance (c) of MAPbCl3 under high pressure[14]
图 4 (a)~(b) 结合中红外峰证明压力下的有序-无序转变[69],其中,FWHM为半峰宽,d为晶面间距,d0为常压下的晶面间距
Figure 4. (a)−(b) order-disordered transitions under pressure demonstrated by FWHM and d/d0 and mid-infrared peaks,where FWHM represent full width at half maximum, d represents the interplanar spacing under the current pressure, and d0 represents the interplanar spacing under ambient condition[69]
图 5 带隙的压力依赖性:(a) 不同卤素钙钛矿中的带隙演化[11, 26, 31, 41–42, 55, 63, 69, 76, 85, 89, 97, 105, 107],(b) 压缩下Pb―I―Pb键的键长和键角的变化[68]
Figure 5. Pressure dependence of band gap:(a) band gap evolution in different halogen perovskites[11, 26, 31, 41–42, 55, 63, 69, 76, 85, 89, 97, 105, 107]; (b) changes of bond length and bond angle of Pb―I―Pb bonds under compression[68]
图 6 不同MHPVs PL的压力依赖:(a) MAPbI1.2Br1.8[9]的PL谱,(b) (2meptH2)PbCl4钙钛矿的PL压力依赖和压力下的光学图像[43],(c) Cs2AgBiCl6[96]的PL谱,(d)~(e)常温常压和高压下自捕获激子发射的演化示意图[96],(f) CsPbBr3单晶的PL压力依赖[106]
Figure 6. Pressure dependence of different MHPVs PL: (a) MAPbI1.2Br1.8[9]; (b) pressure dependence of PL and optical image of (2meptH2)PbCl4[43]; (c) Cs2AgBiCl6[96]; (d)–(e) schematic diagram of the evolution of self-captured exciton emission under environmental conditions and high pressure[38]; (f) pressure dependence of PL in CsPbBr3 single crystal[106]
图 7 (a) MAPbI3的压力依赖PL衰减动力学[11],(b) MAPbI3靠近价带顶的缺陷态在压力下变浅[11],(c) MAPbI3的弱间接带隙[120],(d) α-FAPbI3的压力依赖PL衰减动力学[26],(e) 不同压力下MAPbI3 MC的压力依赖PL衰减动力学[19],(f) MAPbI3 MC平均PL寿命和PL强度的压力依赖[19],(g) CsPbBr3 NCs载流子寿命和带隙的压力依赖[29]
Figure 7. (a) MAPbI3 pressure-dependent PL attenuation kinetics[11]; (b) pressure dependence of defect states in MAPbI3[11]; (c) weak indirect bandgap of MAPbI3[120]; (d) α-FAPbI3 pressure-dependent PL attenuation kinetics[26]; (e) pressure-dependent PL decay kinetics of MAPbI3 MC[19]; (f) pressure dependence of average PL lifetime and PL intensity of MAPbI3 MC[19]; (g) pressure dependence of carrier lifetime and bandgap in CsPbBr3 NCs[29]
图 8 压力驱动的不同MHPVs的光电性质的演化:(a)~(b) MAPbBr3[23],(c)~(d) MASnI3[25],(e)~(g) MAPbBr3多晶的电输运性能[126],(h)~(i) Cs3Bi2I9的增强的光电流和宽带光响应[65],(j) Cs2PbI2Cl2在2 GPa下的显著的光电流增强[44],(k)压力促进的激子解离示意图[44]
Figure 8. Pressure-driven evolution of photoelectric properties of different MHPVs: (a)–(b) MAPbBr3[23]; (c)–(d) MASnI3[25];(e)–(g) electrical transport performance of MAPbBr3 polycrystalline [126]; (h)–(i) enhanced photocurrent and broadband light response of Cs3Bi2I9[65]; (j) significant photocurrent enhancement at 2 GPa for Cs2PbI2Cl2[44]; (k) schematic diagram of stress-facilitated exciton dissociation[44]
图 9 高压下MHPVs的金属化:(a)~(b) MAPbI3带隙的压力依赖[13],(c) 高压下MAPbI3的红外反射光谱[13],(d) 高压下MAPbI3的电导率的温度依赖[13],(e) Cs2In(Ⅰ)In(Ⅲ)Cl6高压原位拉曼光谱[127],(f) Cs2In(I)In(III)Cl6的压力依赖光吸收光谱[127],(g)~(h) 压力下CD3ND3PbI3的红外吸收光谱[18],(i) 72 GPa压力下CD3ND3PbI3的带隙为零[18]
Figure 9. MHPVs metallization under high pressure: (a)–(b) pressure dependence of the MAPbI3 bandgap[13]; (c) infrared reflectance spectrum of MAPbI3 at high pressure[13]; (d) temperature dependence of MAPbI3 conductivity at high pressure[13]; (e) high-pressure in situ Raman of Cs2In(Ⅰ)In(Ⅲ )Cl6[127]; (f) pressure-dependent light absorption spectra of Cs2In(Ⅰ)In(Ⅲ )Cl6[127];(g)–(h) CD3ND3PbI3 IR absorption spectra under pressure[18]; (i) CD3ND3PbI3 with zero bandgap at 72 GPa[18]
图 10 不同MHPVs的压致发光行为:(a)~(c) Cs4PbBr6 NCs从3.01 GPa开始表现出明显的光发射[119],(d) Cs4PbBr6 NCs的与压力相关的色度坐标[119],(e)~(f) (BA)4AgBiBr8在高压下的PL光谱[39],(g) (BA)4AgBiBr8的PL位置和PL强度的压力依赖[39],(h) (BA)4AgBiBr8在高压下的光学图像(PL随压力的增加而变化)[39],(i)~(j) C4N2H14SnBr4的压力依赖PL光谱和与压力相关的色度坐标[114]
Figure 10. Pressed luminescence of different MHPVS:(a)–(c) Cs4PbBr6 nanocrystals begin to exhibit significant emission at high pressure of 3.01GPa[119]; (d) pressure-dependent chromaticity coordinates of Cs4PbBr6 nanocrystals[119] ; (e)–(f) PL spectroscopy of (BA)4AgBiBr8 at high pressure[39]; (g) pressure dependence of PL position and PL strength of (BA)4AgBiBr8[39]; (h) the optical pattern of (BA)4AgBiBr8 at high pressure shows that PL varies with increasing pressure[39]; (i)–(j) pressure dependent PL spectrum and pressure-dependent chromaticity coordinates of C4N2H14SnBr4[114]
表 1 金属卤化物钙钛矿的压力诱导相变
Table 1. Pressure-induced phase transitions of metal halide perovskite
Material Phase transitions Ref. MAPbBr3 Pm¯3m (ambient pressure)→Im¯3 (0.4 GPa)→Pnma (1.8 GPa) [23] MAPbI3 I4/mcm (ambient pressure)→Imm2 (0.26 GPa) [8] MAPbCl3 Pm¯3m (ambient pressure)→Pm¯3m (0.8 GPa)→Pnma (2.0 GPa) [12] CD3ND3PbI3 I4/mcm (ambient pressure)→Imm2 (1.30 GPa)→Imm (2.57 GPa) [18] MASnI3 P4mm (ambient pressure)→Pnma (0.7 GPa) [25] MAPbI1.2Br1.8 Pm¯3m (ambient pressure)→Im¯3 (2.7 GPa) [9] MASnCl3 Pc (ambient pressure)→P1 (1 GPa)→amorphization (above 3 GPa) [24] MA3Bi2Br9 P¯3m1 (ambient pressure)→P21/a (5 GPa) [64] FAPbBr3 Pm¯3m (ambient pressure)→Im¯3 (0.53 GPa)→Pnma (2.2 GPa) [90] FAPbI3 No phase transitions below 7 GPa [26] FAPbI3 NCs Pm¯3m (ambient pressure)→Im¯3(0.6 GPa) [27] α-FAPbI3 Pm¯3m→Imm2 (0.3 GPa), Imm2→Immm (1.7 GPa) [28] (C9NH20)6Pb3Br12 No phase transitions below 80 GPa [38] DABCuCl4 P21/a (ambient pressure)→P2 (6.4 GPa) [63] BA2PbI4 Pbca (ambient pressure)→P21/a (2 GPa) [22] MHy2PbBr4 Pmn21→P21 (near 4 GPa) [74] Cy4BiBr7 No phase transitions below 20.13 GPa [84] CsPbBr3 Isostructural phase transition (about 1.2 GPa) [29] CsPbBr3 Isostructural phase transition (1.2 GPa) [98] CsPbBr3 Pbnm (ambient pressure)→Pm3m (1.7 GPa) [33] RP-CsPbBr3 Pbnm (ambient pressure)→P21/m (0.74 GPa ) [33] CsPbI3 Pnma (ambient pressure)→P21/m (5.6 GPa) [30] Cs2SnBr6 No phase transitions below 20 GPa [34] Cs2AgBiBr6 Fm¯3m (ambient pressure)→I4/m (4.5 GPa) [99] Cs3Bi2I9 No phase transitions below 12.7 GPa [97] Cs3Bi2I9 No phase transitions below 20.3 GPa [93] Cs3Bi2Br9 P¯3m1 (ambient pressure)→C2/c (10.1 GPa) [37] Cs2AgBiCl6 Fm¯3m (ambient pressure)→I4/m (5.6 GPa) [96] Cs2PbI2Cl2 I4/mmm (ambient pressure)→C2/m (2.8 GPa) [44] 表 2 不同MHPVs的PL发生和消失压力
Table 2. Pressures corresponding PL occurrence and disappearance for different MHPVs
Material Dimension Initial pressure of PL/GPa PL annihilation pressure/GPa Ref. MAPbCl3 3D Ambient 7.20 [108] MAPbBr3 3D Ambient 4.85 [108] MAPbBr3 3D Ambient 4.00 [109] MAPbI3 3D Ambient 2.70 [10] MAPbI1.2Br1.8 3D Ambient 1.60 [9] CsPb2Br5 3D Ambient 2.23 [40] CsPbBr3 3D Ambient 2.40 [106] Cs2AgBiCl6 3D Ambient 8.00 [96] (BA)2PbI4 2D Ambient 10.00 [110] (BA)2PbI4 2D Ambient 12.60 [22] (PEA)2PbBr4 2D Ambient 15.60 [41] (PEA)2PbI4 2D Ambient 7.60 [111] (HA)2(GA)Pb2I7 2D Ambient 9.48 [112] (BA)2(MA)Pb2I7 2D Ambient 4.70 [69] (GA)(MA)2Pb2I7 2D Ambient 7.00 [46] (BA)4AgBiBr8 2D 2.50 25.00 [39] C4N2H14PbBr4 1D Ambient 9.00 [91] C4N2H14PbBr4 1D Ambient 24.81 [113] C4N2H14SnBr4 1D 2.06 20.02 [114] CH3(CH2)2NH3PbBr3 1D Ambient 7.30 [115] CsCu2I3 1D Ambient 16.00 [116] (bmpy)9[ZnBr4]2[Pb3Br11] 0D Ambient 18.20 [117] (bmpy)6[Pb3Br12] 0D Ambient >80 [38] (MA)3Bi2I9 0D Ambient 9.00 [118] Cs4PbBr6 0D 3.01 18.23 [119] Cs3Bi2I9 0D Ambient 9.30 [97] -
[1] TRAVIS W, GLOVER E N K, BRONSTEIN H, et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system [J]. Chemical Science, 2016, 7(7): 4548–4556. doi: 10.1039/C5SC04845A [2] KIESLICH G, SUN S J, CHEETHAM A K. An extended tolerance factor approach for organic-inorganic perovskites [J]. Chemical Science, 2015, 6(6): 3430–3433. doi: 10.1039/C5SC00961H [3] BOYD C C, CHEACHAROEN R, LEIJTENS T, et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics [J]. Chemical Reviews, 2019, 119(5): 3418–3451. doi: 10.1021/acs.chemrev.8b00336 [4] Best research-cell efficiency chart [EB/OL]. [2023-10-15]. https://www.nrel.gov/pv/cell-efficiency.html. [5] CHEN X Y, XIE J J, WANG W, et al. Research progress of compositional controlling strategy to perovskite for high performance solar cells [J]. Acta Chimica Sinica, 2019, 77(1): 9–23. doi: 10.6023/a18100447 [6] LIU G, KONG L P, YANG W G, et al. Pressure engineering of photovoltaic perovskites [J]. Materials Today, 2019, 27: 91–106. doi: 10.1016/j.mattod.2019.02.016 [7] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. Journal of the American Chemical Society, 2009, 131(17): 6050–6051. doi: 10.1021/ja809598r [8] CAPITANI F, MARINI C, CARAMAZZA S, et al. High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite [J]. Journal of Applied Physics, 2016, 119(18): 185901. doi: 10.1063/1.4948577 [9] JAFFE A, LIN Y, BEAVERS C M, et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties [J]. ACS Central Science, 2016, 2(4): 201–209. doi: 10.1021/acscentsci.6b00055 [10] JIANG S J, FANG Y N, LI R P, et al. Pressure-dependent polymorphism and band-gap tuning of methylammonium lead iodide perovskite [J]. Angewandte Chemie International Edition, 2016, 55(22): 6540–6544. doi: 10.1002/anie.201601788 [11] KONG L P, LIU G, GONG J, et al. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(32): 8910–8915. doi: 10.1073/pnas.1609030113 [12] WANG L R, WANG K, XIAO G J, et al. Pressure-induced structural evolution and band gap shifts of organometal halide perovskite-based methylammonium lead chloride [J]. The Journal of Physical Chemistry Letters, 2016, 7(24): 5273–5279. doi: 10.1021/acs.jpclett.6b02420 [13] JAFFE A, LIN Y, MAO W L, et al. Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3 [J]. Journal of the American Chemical Society, 2017, 139(12): 4330–4333. doi: 10.1021/jacs.7b01162 [14] SZAFRAŃSKI M, KATRUSIAK A. Photovoltaic hybrid perovskites under pressure [J]. The Journal of Physical Chemistry Letters, 2017, 8(11): 2496–2506. doi: 10.1021/acs.jpclett.7b00520 [15] ZHANG R, CAI W Z, BI T G, et al. Effects of nonhydrostatic stress on structural and optoelectronic properties of methylammonium lead bromide perovskite [J]. The Journal of Physical Chemistry Letters, 2017, 8(15): 3457–3465. doi: 10.1021/acs.jpclett.7b01367 [16] JIANG H Y, XUE H T, WANG L F, et al. Effect of pressure-induced structural phase transition on electronic and optical properties of perovskite CH3NH3PbI3 [J]. Materials Science in Semiconductor Processing, 2019, 96: 59–65. doi: 10.1016/j.mssp.2019.01.038 [17] LEE J H, JAFFE A, LIN Y, et al. Origins of the pressure-induced phase transition and metallization in the halide perovskite (CH3NH3)PbI3 [J]. ACS Energy Letters, 2020, 5(7): 2174–2181. doi: 10.1021/acsenergylett.0c00772 [18] KONG L P, GONG J, HU Q Y, et al. Suppressed lattice disorder for large emission enhancement and structural robustness in hybrid lead iodide perovskite discovered by high-pressure isotope effect [J]. Advanced Functional Materials, 2021, 31(9): 2009131. doi: 10.1002/adfm.202009131 [19] YIN Y F, TIAN W M, LUO H, et al. Excellent carrier transport property of hybrid perovskites sustained under high pressures [J]. ACS Energy Letters, 2022, 7(1): 154–161. doi: 10.1021/acsenergylett.1c02359 [20] JUNG Y K, ABDULLA M, FRIEND R H, et al. Pressure-induced non-radiative losses in halide perovskite light-emitting diodes [J]. Journal of Materials Chemistry C, 2022, 10(35): 12560–12568. doi: 10.1039/D2TC01490D [21] OU T J, YAN J J, XIAO C H, et al. Visible light response, electrical transport, and amorphization in compressed organolead iodine perovskites [J]. Nanoscale, 2016, 8(22): 11426–11431. doi: 10.1039/C5NR07842C [22] YUAN Y, LIU X F, MA X D, et al. Large band gap narrowing and prolonged carrier lifetime of (C4H9NH3)2PbI4 under High Pressure [J]. Advanced Science, 2019, 6(15): 1900240. doi: 10.1002/advs.201900240 [23] WANG Y G, LYU X J, YANG W G, et al. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite [J]. Journal of the American Chemical Society, 2015, 137(34): 11144–11149. doi: 10.1021/jacs.5b06346 [24] WANG L R, OU T J, WANG K, et al. Pressure-induced structural evolution, optical and electronic transitions of nontoxic organometal halide perovskite-based methylammonium tin chloride [J]. Applied Physics Letters, 2017, 111(23): 233901. doi: 10.1063/1.5004186 [25] LÜ X J, WANG Y G, STOUMPOS C C, et al. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization [J]. Advanced Materials, 2016, 28(39): 8663–8668. doi: 10.1002/adma.201600771 [26] LIU G, KONG L P, GONG J, et al. Pressure-induced bandgap optimization in lead-based perovskites with prolonged carrier lifetime and ambient retainability [J]. Advanced Functional Materials, 2017, 27(3): 1604208. doi: 10.1002/adfm.201604208 [27] ZHU H, CAI T, QUE M D, et al. Pressure-induced phase transformation and band-gap engineering of formamidinium lead iodide perovskite nanocrystals [J]. The Journal of Physical Chemistry Letters, 2018, 9(15): 4199–4205. doi: 10.1021/acs.jpclett.8b01852 [28] WANG P, GUAN J W, GALESCHUK D T K, et al. Pressure-induced polymorphic, optical, and electronic transitions of formamidinium lead iodide perovskite [J]. The Journal of Physical Chemistry Letters, 2017, 8(10): 2119–2125. doi: 10.1021/acs.jpclett.7b00665 [29] XIAO G J, CAO Y, QI G Y, et al. Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals [J]. Journal of the American Chemical Society, 2017, 139(29): 10087–10094. doi: 10.1021/jacs.7b05260 [30] YUAN G, QIN S, WU X, et al. Pressure-induced phase transformation of CsPbI3 by X-ray diffraction and Raman spectroscopy [J]. Phase Transitions, 2018, 91(1): 38–47. doi: 10.1080/01411594.2017.1357180 [31] CAO Y, QI G Y, LIU C, et al. Pressure-tailored band gap engineering and structure evolution of cubic cesium lead iodide perovskite nanocrystals [J]. The Journal of Physical Chemistry C, 2018, 122(17): 9332–9338. doi: 10.1021/acs.jpcc.8b01673 [32] LIANG Y F, HUANG X L, HUANG Y P, et al. New metallic ordered phase of perovskite CsPbI3 under pressure [J]. Advanced Science, 2019, 6(14): 1900399. doi: 10.1002/advs.201900399 [33] YESUDHAS S, MORRELL M V, ANDERSON M J, et al. Pressure-induced phase changes in cesium lead bromide perovskite nanocrystals with and without Ruddlesden-Popper faults [J]. Chemistry of Materials, 2020, 32(2): 785–794. doi: 10.1021/acs.chemmater.9b04157 [34] YUAN G, HUANG S X, NIU J J, et al. Compressibility of Cs2SnBr6 by X-ray diffraction and Raman spectroscopy [J]. Solid State Communications, 2018, 275: 68–72. doi: 10.1016/j.ssc.2018.03.014 [35] FU R J, CHEN Y P, YONG X, et al. Pressure-induced structural transition and band gap evolution of double perovskite Cs2AgBiBr6 nanocrystals [J]. Nanoscale, 2019, 11(36): 17004–17009. doi: 10.1039/C9NR07030C [36] GIRDZIS S P, LIN Y, LEPPERT L, et al. Revealing local disorder in a silver-bismuth halide perovskite upon compression [J]. The Journal of Physical Chemistry Letters, 2021, 12(1): 532–536. doi: 10.1021/acs.jpclett.0c03412 [37] GENG T, WEI S, ZHAO W Y, et al. Insight into the structure-property relationship of two-dimensional lead-free halide perovskite Cs3Bi2Br9 nanocrystals under pressure [J]. Inorganic Chemistry Frontiers, 2021, 8(6): 1410–1415. doi: 10.1039/D0QI01300E [38] FANG Y Y, ZHANG L, WU L W, et al. Pressure-induced emission (PIE) and phase transition of a two-dimensional halide double perovskite (BA)4AgBiBr8 (BA = CH3(CH2)3NH3+) [J]. Angewandte Chemie International Edition, 2019, 58(43): 15249–15253. doi: 10.1063/5.0058821 [39] CHEN M T, GUO S H, BU K J, et al. Pressure-induced robust emission in a zero-dimensional hybrid metal halide (C9NH20)6Pb3Br12 [J]. Matter and Radiation at Extremes, 2021, 6(5): 08401. doi: 10.1002/anie.201906311 [40] MA Z W, LI F F, QI G Y, et al. Structural stability and optical properties of two-dimensional perovskite-like CsPb2Br5 microplates in response to pressure [J]. Nanoscale, 2019, 11(3): 820–825. doi: 10.1039/C8NR05684F [41] ZHANG L, WU L W, WANG K, et al. Pressure-induced broadband emission of 2D organic-inorganic hybrid perovskite (C6H5C2H4NH3)2PbBr4 [J]. Advanced Science, 2019, 6(2): 1801628. doi: 10.1002/advs.201801628 [42] ZHAN X H, JIANG X M, LV P, et al. Enhanced structural stability and pressure-induced photoconductivity in two-dimensional hybrid perovskite (C6H5CH2NH3)2 CuBr4 [J]. Angewandte Chemie International Edition, 2022, 61(28): e202205491. doi: 10.1002/anie.202205491 [43] FANG Y Y, WANG J T, ZHANG L, et al. Tailoring the high-brightness “warm” white light emission of two-dimensional perovskite crystals via a pressure-inhibited nonradiative transition [J]. Chemical Science, 2023, 14(10): 2652–2658. doi: 10.1039/D2SC06982B [44] GUO S H, BU K J, LI J W, et al. Enhanced photocurrent of all-inorganic two-dimensional perovskite Cs2PbI2Cl2 via pressure-regulated excitonic features [J]. Journal of the American Chemical Society, 2021, 143(6): 2545–2551. doi: 10.1021/jacs.0c11730 [45] AZEEM M, QIN Y, LI Z G, et al. Cooperative B-site octahedral tilting, distortion and A-site conformational change induced phase transitions of a 2D lead halide perovskite [J]. Materials Chemistry Frontiers, 2021, 5(20): 7587–7594. doi: 10.1039/D1QM00566A [46] CHEN Y P, FU R J, WANG L R, et al. Emission enhancement and bandgap retention of a two-dimensional mixed cation lead halide perovskite under high pressure [J]. Journal of Materials Chemistry A, 2019, 7(11): 6357–6362. doi: 10.1039/C8TA11992A [47] CODURI M, STROBEL T A, SZAFRANSKI M, et al. Band gap engineering in MASnBr3 and CsSnBr3 perovskites: mechanistic insights through the application of pressure [J]. The Journal of Physical Chemistry Letters, 2019, 10(23): 7398–7405. doi: 10.1021/acs.jpclett.9b03046 [48] COHEN B E, WIERZBOWSKA M, ETGAR L. High efficiency and high open circuit voltage in quasi 2D perovskite based solar cells [J]. Advanced Functional Materials, 2017, 27(5): 1604733. doi: 10.1002/adfm.201604733 [49] FU R J, CHEN Y P, WANG L R, et al. Stability and band gap engineering of silica-confined lead halide perovskite nanocrystals under high pressure [J]. Geoscience Frontiers, 2021, 12(2): 957–963. doi: 10.1016/j.gsf.2020.07.004 [50] FU R J, ZHAO W Y, WANG L R, et al. Pressure-induced emission toward harvesting cold white light from warm white light [J]. Angewandte Chemie International Edition, 2021, 60(18): 10082–10088. doi: 10.1002/anie.202015395 [51] GAO F F, LI X, QIN Y, et al. Dual-stimuli-responsive photoluminescence of enantiomeric two-dimensional lead halide perovskites [J]. Advanced Optical Materials, 2021, 9(23): 2100003. doi: 10.1002/adom.202100003 [52] GAO F F, SONG H P, LI Z G, et al. Pressure-tuned multicolor emission of 2D lead halide perovskites with ultrahigh color purity [J]. Angewandte Chemie International Edition, 2023, 62(12): e202218675. doi: 10.1002/anie.202218675 [53] GAO X J, WANG Q, ZHANG Y, et al. Pressure effects on optoelectronic properties of CsPbBr3 nanocrystals [J]. The Journal of Physical Chemistry C, 2020, 124(20): 11239–11247. doi: 10.1021/acs.jpcc.0c02701 [54] GENG T, MA Z W, CHEN Y P, et al. Bandgap engineering in two-dimensional halide perovskite Cs3Sb2I9 nanocrystals under pressure [J]. Nanoscale, 2020, 12(3): 1425–1431. doi: 10.1039/C9NR09533K [55] GENG T, SHI Y, LIU Z, et al. Pressure-induced emission from all-inorganic two-dimensional vacancy-ordered lead-free metal halide perovskite nanocrystals [J]. The Journal of Physical Chemistry Letters, 2022, 13(50): 11837–11843. doi: 10.1021/acs.jpclett.2c03332 [56] GHOSH D, AZIZ A, DAWSON J A, et al. Putting the squeeze on lead iodide perovskites: pressure-induced effects to tune their structural and optoelectronic behavior [J]. Chemistry of Materials, 2019, 31(11): 4063–4071. doi: 10.1021/acs.chemmater.9b00648 [57] GHOSH P S, PONOMAREVA I. Negative linear compressibility in organic-inorganic hybrid perovskite [NH2NH3]X(HCOO)3 (X = Mn, Fe, Co) [J]. The Journal of Physical Chemistry Letters, 2022, 13(13): 3143–3149. doi: 10.1021/acs.jpclett.2c00288 [58] HUANG J S, YUAN Y B, SHAO Y C, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications [J]. Nature Reviews Materials, 2017, 2(7): 17042. doi: 10.1038/natrevmats.2017.42 [59] KE F, WANG C X, JIA C J, et al. Preserving a robust CsPbI3 perovskite phase via pressure-directed octahedral tilt [J]. Nature Communications, 2021, 12(1): 461. doi: 10.1038/s41467-020-20745-5 [60] KHOLIL M I, BHUIYAN M T H. Effects of pressure on narrowing the band gap, visible light absorption, and semi-metallic transition of lead-free perovskite CsSnBr3 for optoelectronic applications [J]. Journal of Physics and Chemistry of Solids, 2021, 154: 110083. doi: 10.1016/j.jpcs.2021.110083 [61] LI H, QIN Y, SHAN B H, et al. Unusual pressure-driven phase transformation and band renormalization in 2D vdW hybrid lead halide perovskites [J]. Advanced Materials, 2020, 32(12): 1907364. doi: 10.1002/adma.201907364 [62] LI H, WINES D, CHEN B, et al. Abnormal phase transition and band renormalization of guanidinium-based organic-inorganic hybrid perovskite [J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44964–44971. doi: 10.1021/acsami.1c14521 [63] LI Q, LI S R, WANG K, et al. High-pressure study of perovskite-like organometal halide: band-gap narrowing and structural evolution of [NH3-(CH2)4-NH3]CuCl4 [J]. The Journal of Physical Chemistry Letters, 2017, 8(2): 500–506. doi: 10.1021/acs.jpclett.6b02786 [64] LI Q, YIN L X, CHEN Z W, et al. High pressure structural and optical properties of two-dimensional hybrid halide perovskite (CH3NH3)3Bi2Br9 [J]. Inorganic Chemistry, 2019, 58(2): 1621–1626. doi: 10.1021/acs.inorgchem.8b03190 [65] LI Z L, JIA B X, FANG S X, et al. Pressure-tuning photothermal synergy to optimize the photoelectronic properties in amorphous halide perovskite Cs3Bi2I9 [J]. Advanced Science, 2023, 10(6): 2205837. doi: 10.1002/advs.202205837 [66] LIANG Y F, WU M, TIAN C, et al. Pressure-tuned quantum well configuration in two-dimensional PA8Pb5I18 perovskites for highly efficient yellow fluorescence [J]. ACS Applied Energy Materials, 2021, 4(9): 10003–10011. doi: 10.1021/acsaem.1c01925 [67] LIANG Y F, ZANG Y F, HUANG X L, et al. Broadband emission enhancement induced by self-trapped excited states in one-dimensional EAPbI3 perovskite under pressure [J]. The Journal of Physical Chemistry C, 2020, 124(16): 8984–8991. doi: 10.1021/acs.jpcc.0c01553 [68] LIU G, GONG J, KONG L P, et al. Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(32): 8076–8081. doi: 10.1073/pnas.1809167115 [69] LIU G, KONG L P, GUO P J, et al. Two regimes of bandgap red shift and partial ambient retention in pressure-treated two-dimensional perovskites [J]. ACS Energy Letters, 2017, 2(11): 2518–2524. doi: 10.1021/acsenergylett.7b00807 [70] LLOYD A J, HESTER B R, BAXTER S J, et al. Hybrid double perovskite containing helium: [He2][CaZr]F6 [J]. Chemistry of Materials, 2021, 33(9): 3132–3138. doi: 10.1021/acs.chemmater.0c04782 [71] LÜ X J, YANG W G, JIA Q X, et al. Pressure-induced dramatic changes in organic-inorganic halide perovskites [J]. Chemical Science, 2017, 8(10): 6764–6776. doi: 10.1039/C7SC01845B [72] MA Y L, ZHANG L, TANG Y, et al. Pressure-induced piezochromism and structure transitions in lead-free layered Cs4MnBi2Cl12 quadruple perovskite [J]. ACS Applied Energy Materials, 2021, 4(8): 7513–7518. doi: 10.1021/acsaem.1c01583 [73] MA Z W, LI Q, LUO J J, et al. Pressure-driven reverse intersystem crossing: new path toward bright deep-blue emission of lead-free halide double perovskites [J]. Journal of the American Chemical Society, 2021, 143(37): 15176–15184. doi: 10.1021/jacs.1c06207 [74] MĄCZKA M, SOBCZAK S, RATAJCZYK P, et al. Pressure-driven phase transition in two-dimensional perovskite MHy2PbBr4 [J]. Chemistry of Materials, 2022, 34(17): 7867–7877. doi: 10.1021/acs.chemmater.2c01533 [75] NICHOLAS A D, ZHAO J, SLEBODNICK C, et al. High-pressure structural and optical property evolution of a hybrid indium halide perovskite [J]. Journal of Solid State Chemistry, 2021, 300: 122262. doi: 10.1016/j.jssc.2021.122262 [76] RATTÉ J, MACINTOSH M F, DILORETO L, et al. Spacer-dependent and pressure-tuned structures and optoelectronic properties of 2D hybrid halide perovskites [J]. The Journal of Physical Chemistry Letters, 2023, 14(2): 403–412. doi: 10.1021/acs.jpclett.2c03555 [77] SAEED M, ALI M A, MURAD S, et al. Pressure induced structural, electronic, optical and thermal properties of CsYbBr3, a theoretical investigation [J]. Journal of Materials Research and Technology, 2021, 10: 687–696. doi: 10.1016/j.jmrt.2020.12.052 [78] SAMANTA D, SAHA P, GHOSH B, et al. Pressure-induced emergence of visible luminescence in lead free halide perovskite Cs3Bi2Br9: effect of structural distortion [J]. The Journal of Physical Chemistry C, 2021, 125(6): 3432–3440. doi: 10.1021/acs.jpcc.0c10624 [79] SHEN P F, VOGT T, LEE Y. Pressure-induced enhancement of broad-band white light emission in butylammonium lead bromide [J]. The Journal of Physical Chemistry Letters, 2020, 11(10): 4131–4137. doi: 10.1021/acs.jpclett.0c01160 [80] SHERWOOD B, RIDLEY C J, BULL C L, et al. A pressure induced reversal to the 9R perovskite in Ba3MoNbO8.5 [J]. Journal of Materials Chemistry A, 2021, 9(10): 6567–6574. doi: 10.1039/D0TA11270D [81] SHI Y, JIN Z Q, LV P F, et al. Bandgap narrowing and piezochromism of doped two-dimensional hybrid perovskite nanocrystals under pressure [J]. Journal of Materials Chemistry C, 2023, 11(5): 1726–1732. doi: 10.1039/D2TC05158C [82] SHI Y, ZHAO W Y, MA Z W, et al. Self-trapped exciton emission and piezochromism in conventional 3D lead bromide perovskite nanocrystals under high pressure [J]. Chemical Science, 2021, 12(44): 14711–14717. doi: 10.1039/D1SC04987A [83] SONG C P, YANG H R, LIU F, et al. Ultrafast femtosecond pressure modulation of structure and exciton kinetics in 2D halide perovskites for enhanced light response and stability [J]. Nature Communications, 2021, 12(1): 4879. doi: 10.1038/s41467-021-25140-2 [84] SUN M E, GENG T, YONG X, et al. Pressure-triggered blue emission of zero-dimensional organic bismuth bromide perovskite [J]. Advanced Science, 2021, 8(9): 2004853. doi: 10.1002/advs.202004853 [85] SUN M E, WANG Y G, WANG F, et al. Chirality-dependent structural transformation in chiral 2D perovskites under high pressure [J]. Journal of the American Chemical Society, 2023, 145(16): 8908–8916. doi: 10.1021/jacs.2c12527 [86] SUN S J, DENG Z Y, WU Y, et al. Variable temperature and high-pressure crystal chemistry of perovskite formamidinium lead iodide: a single crystal X-ray diffraction and computational study [J]. Chemical Communications, 2017, 53(54): 7537–7540. doi: 10.1039/C7CC00995J [87] SZAFRAŃSKI M, KATRUSIAK A, STÅHL K. Time-dependent transformation routes of perovskites CsPbBr3 and CsPbCl3 under high pressure [J]. Journal of Materials Chemistry A, 2021, 9(17): 10769–10779. doi: 10.1039/D1TA01875B [88] TIAN C, LIANG Y F, CHEN W H, et al. Hydrogen-bond enhancement triggered structural evolution and band gap engineering of hybrid perovskite (C6H5CH2NH3)2PbI4 under high pressure [J]. Physical Chemistry Chemical Physics, 2020, 22(4): 1841–1846. doi: 10.1039/C9CP05904K [89] WANG J X, WANG L R, WANG F, et al. Pressure-induced bandgap engineering of lead-free halide double perovskite (NH4)2SnBr6 [J]. Physical Chemistry Chemical Physics, 2021, 23(35): 19308–19312. doi: 10.1039/D1CP03267D [90] WANG L R, WANG K, ZOU B. Pressure-induced structural and optical properties of organometal halide perovskite-based formamidinium lead bromide [J]. The Journal of Physical Chemistry Letters, 2016, 7(13): 2556–2562. doi: 10.1021/acs.jpclett.6b00999 [91] WANG Y Q, GUO S H, LUO H, et al. Reaching 90% photoluminescence quantum yield in one-dimensional metal halide C4N2H14PbBr4 by pressure-suppressed nonradiative loss [J]. Journal of the American Chemical Society, 2020, 142(37): 16001–16006. doi: 10.1021/jacs.0c07166 [92] WANG Y J, ZHANG L K, MA S L, et al. Octahedral tilting dominated phase transition in compressed double perovskite Ba2SmBiO6 [J]. Applied Physics Letters, 2021, 118(23): 231903. doi: 10.1063/5.0054742 [93] WU L W, DONG Z Y, ZHANG L, et al. High-pressure band-gap engineering and metallization in the perovskite derivative Cs3Sb2I9 [J]. ChemSusChem, 2019, 12(17): 3971–3976. doi: 10.1002/cssc.201901388 [94] XIANG G B, WU Y W, ZHANG M, et al. Dimension-dependent bandgap narrowing and metallization in lead-free halide perovskite Cs3Bi2X9 (X = I, Br, and Cl) under high pressure [J]. Nanomaterials, 2021, 11(10): 2712. doi: 10.3390/nano11102712 [95] YANG H J, SHI W W, NAGAOKA Y, et al. Access and capture of layered double perovskite polytypic phase through high-pressure engineering [J]. The Journal of Physical Chemistry C, 2023, 127(5): 2407–2415. doi: 10.1021/acs.jpcc.2c07970 [96] ZHANG L, FANG Y Y, SUI L Z, et al. Tuning emission and electron-phonon coupling in lead-free halide double perovskite Cs2AgBiCl6 under pressure [J]. ACS Energy Letters, 2019, 4(12): 2975–2982. doi: 10.1021/acsenergylett.9b02155 [97] ZHANG L, LIU C M, WANG L R, et al. Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9 [J]. Angewan Chemie International Edition, 2018, 57(35): 11213–11217. doi: 10.1002/anie.201804310 [98] ZHANG L, ZENG Q X, WANG K. Pressure-induced structural and optical properties of inorganic halide perovskite CsPbBr3 [J]. The Journal of Physical Chemistry Letters, 2017, 8(16): 3752–3758. doi: 10.1021/acs.jpclett.7b01577 [99] LI Q, WANG Y G, PAN W C, et al. High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite [J]. Angewandte Chemie International Edition, 2017, 56(50): 15969–15973. doi: 10.1002/anie.201708684 [100] SHARMA S M, SIKKA S K. Pressure induced amorphization of materials [J]. Progress in Materials Science, 1996, 40(1): 1–77. doi: 10.1016/0079-6425(95)00006-2 [101] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells [J]. Journal of Applied Physics, 1961, 32(3): 510–519. doi: 10.1063/1.1736034 [102] LI M, LIU T B, WANG Y G, et al. Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies [J]. Matter and Radiation at Extremes, 2020, 5(1): 018201. doi: 10.1063/1.5133653 [103] ZHAO W J, RIBEIRO R M, EDA G. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets [J]. Accounts of Chemical Research, 2015, 48(1): 91–99. doi: 10.1021/ar500303m [104] TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium [J]. Physica Status Solidi (b), 1966, 15(2): 627–637. doi: 10.1002/pssb.19660150224 [105] GAO C F, LI R P, LI Y R, et al. Direct-indirect transition of pressurized two-dimensional halide perovskite: role of benzene ring stack ordering [J]. The Journal of Physical Chemistry Letters, 2019, 10(19): 5687–5693. doi: 10.1021/acs.jpclett.9b02604 [106] GONG J B, ZHONG H X, GAO C, et al. Pressure-induced indirect-direct bandgap transition of CsPbBr3 single crystal and its effect on photoluminescence quantum yield [J]. Advanced Science, 2022, 9(29): 2201554. doi: 10.1002/advs.202201554 [107] WANG J X, WANG L R, LI Y Q, et al. Pressure-induced metallization of lead-free halide double perovskite (NH4)2PtI6 [J]. Advanced Science, 2022, 9(28): 2203442. doi: 10.1002/advs.202203442 [108] MATSUISHI K, ISHIHARA T, ONARI S, et al. Optical properties and structural phase transitions of lead-halide based inorganic-organic 3D and 2D perovskite semiconductors under high pressure [J]. Physica Status Solidi (B), 2004, 241(14): 3328–3333. doi: 10.1002/pssb.200405229 [109] YIN T T, FANG Y N, CHONG W K, et al. High-pressure-induced comminution and recrystallization of CH3NH3PbBr3 nanocrystals as large thin nanoplates [J]. Advanced Materials, 2018, 30(2): 1705017. doi: 10.1002/adma.201705017 [110] YIN T T, LIU B, YAN J X, et al. Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes [J]. Journal of the American Chemical Society, 2019, 141(3): 1235–1241. doi: 10.1021/jacs.8b07765 [111] LIU S, SUN S S, GAN C K, et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation [J]. Science Advances, 2019, 5(7): eaav9445. doi: 10.1126/sciadv.aav9445 [112] GUO S H, ZHAO Y S, BU K J, et al. Pressure-suppressed carrier trapping leads to enhanced emission in two-dimensional perovskite (HA)2(GA)Pb2I7 [J]. Angewandte Chemie International Edition, 2020, 59(40): 17533–17539. doi: 10.1002/anie.202001635 [113] MA Z W, LI F F, SUI L Z, et al. Tunable color temperatures and emission enhancement in 1D halide perovskites under high pressure [J]. Advanced Optical Materials, 2020, 8(18): 2000713. doi: 10.1002/adom.202000713 [114] SHI Y, MA Z W, ZHAO D L, et al. Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites [J]. Journal of the American Chemical Society, 2019, 141(16): 6504–6508. doi: 10.1021/jacs.9b02568 [115] REN X T, YAN X Z, AHMAD A S, et al. Pressure-induced phase transition and band gap engineering in propylammonium lead bromide perovskite [J]. The Journal of Physical Chemistry C, 2019, 123(24): 15204–15208. doi: 10.1021/acs.jpcc.9b02854 [116] LI Q, CHEN Z W, YANG B, et al. Pressure-induced remarkable enhancement of self-trapped exciton emission in one-dimensional CsCu2I3 with tetrahedral units [J]. Journal of the American Chemical Society, 2020, 142(4): 1786–1791. doi: 10.1021/jacs.9b13419 [117] LI Q, CHEN Z W, LI M Z, et al. Pressure-engineered photoluminescence tuning in zero-dimensional lead bromide trimer clusters [J]. Angewandte Chemie International Edition, 2021, 60(5): 2583–2587. doi: 10.1002/anie.202009237 [118] ZHANG L, LIU C M, LIN Y, et al. Tuning optical and electronic properties in low-toxicity organic-inorganic hybrid (CH3NH3)3Bi2I9 under high pressure [J]. The Journal of Physical Chemistry Letters, 2019, 10(8): 1676–1683. doi: 10.1021/acs.jpclett.9b00595 [119] MA Z W, LIU Z, LU S Y, et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals [J]. Nature Communications, 2018, 9(1): 4506. doi: 10.1038/s41467-018-06840-8 [120] WANG T Y, DAIBER B, FROST J M, et al. Indirect to direct bandgap transition in methylammonium lead halide perovskite [J]. Energy & Environmental Science, 2017, 10(2): 509–515. doi: 10.1039/c6ee03474h [121] HAN Q F, BAE S H, SUN P Y, et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties [J]. Advanced Materials, 2016, 28(11): 2253–2258. doi: 10.1002/adma.201505002 [122] MIZUSAKI J, ARAI K, FUEKI K. Ionic conduction of the perovskite-type halides [J]. Solid State Ionics, 1983, 11(3): 203–211. doi: 10.1016/0167-2738(83)90025-5 [123] YAMADA K, ISOBE K, TSUYAMA E, et al. Chloride ion conductor CH3NH3GeCl3 studied by Rietveld analysis of X-ray diffraction and 35Cl NMR [J]. Solid State Ionics, 1995, 79: 152–157. doi: 10.1016/0167-2738(95)00055-B [124] YAMADA K, KURANAGA Y, UEDA K, et al. Phase transition and electric conductivity of ASnCl3 (A= Cs and CH3NH3) [J]. Bulletin of the Chemical Society of Japan, 1998, 71(1): 127–134. doi: 10.1246/bcsj.71.127 [125] AZPIROZ J M, MOSCONI E, BISQUERT J, et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation [J]. Energy & Environmental Science, 2015, 8(7): 2118–2127. doi: 10.1039/c5ee01265a [126] YAN H C, OU T J, JIAO H, et al. Pressure dependence of mixed conduction and photo responsiveness in organolead tribromide perovskites [J]. The Journal of Physical Chemistry Letters, 2017, 8(13): 2944–2950. doi: 10.1021/acs.jpclett.7b01022 [127] LIN J, CHEN H, GAO Y, et al. Pressure-induced semiconductor-to-metal phase transition of a charge-ordered indium halide perovskite [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(47): 23404–23409. doi: 10.1073/pnas.1907576116 [128] YAO X D, BAI Y X, JIN C, et al. Anomalous polarization enhancement in a van der Waals ferroelectric material under pressure [J]. Nature Communications, 2023, 14(1): 4301. doi: 10.1038/s41467-023-40075-6 -