Quantum Magnetic Measurement under High Pressure Based on Color Centres in Silicon Carbide
-
摘要: 高压下的量子精密测量对于研究极端环境下的物质结构及演化具有重要意义。针对传统方法难以实现高压下原位高分辨率磁探测的难题,近年来提出了基于固态色心的高压量子精密测量技术,并取得了一系列重要进展,对于推动极端条件下的物质研究具有重要意义。本文主要聚焦基于碳化硅色心的高压量子精密测量,回顾了碳化硅中硅空位色心和双空位色心在高压下的光学和自旋性质,介绍了利用碳化硅色心光探测磁共振技术进行的高压量子传感,包括Nd2Fe14B的磁性相变、YBa2Cu3O6.6超导体的超导转变温度-压力相图等,展示了基于碳化硅色心的高压量子精密测量在压力传感、压致磁性相变以及压致超导转变方面的应用。Abstract: The quantum precision magnetic measurement in high-pressure environments is of great significance for studying the evolution and structure of matter under an extreme environment. Given the challenges associated with achieving in-situ high-resolution magnetic detection under high pressure by using traditional methods, the proposed high-pressure quantum magnetic measurement based on solid-state color centres has made significant progress in recent years. This advancement is of great significance in advancing the study of matter under high pressure. And this paper primarily focuses on the research of quantum magnetic measurement using SiC color centres under high pressure. The optical and spin properties of silicon vacancy defects and divacancy defects in SiC under high pressure is reviewed. Furthermore, the magnetic phase transition of Nd2Fe14B is observed, and the critical temperature-pressure phase diagram of the superconductor YBa2Cu3O6.6 is mapped out. This work reviews and highlights the potential of silicon vacancy-based quantum sensors for in situ magnetic detection at high pressures. Its applications in pressure sensing, pressure-induced magnetic phase transformation and pressure-induced superconducting transformation are also presented.
-
图 2 (a) 不同压力下硅空位色心的室温荧光光谱[24],(b) 4H-SiC中硅空位色心的基态(2DG)零场分裂随温度的变化[25],(c) 31 Gs磁场下的常压拉比振荡[24],(d) 相干时间T2随压力的变化曲线[24]
Figure 2. (a) Room temperature PL spectra of the VSi defects at different pressures[24]; (b) the ground state (2DG) zero-field splitting in the VSi centre of 4H-SiC as a function of temperature[25]; (c) Rabi oscillations at a magnetic field of 31 Gs at ambient pressure[24]; (d) T2 as a function of pressure[24]
图 3 (a) 温度为20~300 K时4H-SiC的光致发光光谱[19],(b) 温度为25 K时不同压力下双空位色心的低温荧光光谱[27],(c) 20 K低温时6种不同双色心(PL1~PL6)的光致发光谱[19]
Figure 3. (a) Photoluminescence spectra of 4H-SiC at sample temperatures ranging from 20 to 300 K[19]; (b) low-temperature fluorescence spectra of divacancy under different pressures at 25 K[27]; (c) an expanded view of low-temperature (20 K) photoluminescence showing the six defect lines (PL1–PL6)[19]
图 7 利用硅空位色心探测钕铁硼磁性材料的压力诱导磁性相变[24] :(a) 硅空位色心和Nd2Fe14B样品的共聚焦扫描图,(b) 压力诱导磁相变过程中磁场的变化示意图(Bc、BNdFeB和Btot分别表示外加的c轴磁场、Nd2Fe14B的磁场和硅空位色心的总磁场),(c) 参考点和测量点的硅空位色心ODMR谱,(d) 利用硅空位色心测量的高压下Nd2Fe14B样品的磁场变化
Figure 7. Detection of the pressure-induced magnetic transition of a Nd2Fe14B magnet using shallow VSi defects[24]: (a) confocal scanning microscopy image of VSi defects and Nd2Fe14B sample on the culet surface; (b) local magnetic field vectors during the pressure-induced magnetic phase transition (Bc, BNdFeB and Btot represent the magnetic field of the c-axis, Nd2Fe14B sample and the total magnetic field on the VSi defects, respectively); (c) ODMR spectra of VSi defects in the detected and reference position; (d) the magnetic fields of the Nd2Fe14B sample were measured using VSi defects
图 8 利用硅空位色心对YBCO超导材料的T-p相图进行探测[24]:(a) 硅空位色心和YBa2Cu3O6.6样品的共聚焦扫描图,(b) 9.0 GPa下不同温度的硅空位色心ODMR谱,(c) 9.0 GPa下ODMR峰分裂随温度的变化,(d) 不同压力下ODMR峰分裂随温度的变化,(e) YBa2Cu3O6.6的超导转变温度-压力相图
Figure 8. Detection of the temperature-pressure phase diagram of superconductor YBa2Cu3O6.6 using shallow VSi defects[24]: (a) confocal scanning microscopy image of the VSi defects and YBa2Cu3O6.6 sample; (b) ODMR spectra of VSi defects at different temperatures at 9.0 GPa; (c) the ODMR splitting with temperature at 9.0 GPa; (d) the ODMR splitting with temperature under different pressures; (e) the YBa2Cu3O6.6 Tc-pressure phase diagram
图 9 利用双空位PL6色心探测Nd2Fe14B的压力诱导磁转变[27]:(a) 双空位PL6色心的D随压力线性增大;(b) 双空位PL6色心和Nd2Fe14B的共聚焦扫描图,中间蓝色部分代表Nd2Fe14B样品;(c) 不同压力下双空位PL6色心的ODMR谱;(d) 通过PL6色心检测Nd2Fe14B样品的磁场
Figure 9. Detection of pressure-induced magnetic phase transition of a Nd2Fe14B magnet using PL6 defects[27]: (a) measured D increases linearly as the pressure increases; (b) confocal scanning microscopy image of PL6 defects and Nd2Fe14B sample on the culet surface; (c) ODMR spectra of PL6 defects under different pressures; (d) magnetic field of Nd2Fe14B sample detected by PL6 defects
-
[1] DALLADAY-SIMPSON P, HOWIE R T, GREGORYANZ E. Evidence for a new phase of dense hydrogen above 325 gigapascals [J]. Nature, 2016, 529(7584): 63–67. doi: 10.1038/nature16164 [2] LIU X D, HOWIE R T, ZHANG H C, et al. High-pressure behavior of hydrogen and deuterium at low temperatures [J]. Physical Review Letters, 2017, 119(6): 065301. doi: 10.1103/PhysRevLett.119.065301 [3] DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8 [4] DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964 [5] MAO H K, CHEN B, GOU H Y, et al. 2020: transformative science in the pressure dimension [J]. Matter and Radiation at Extremes, 2021, 6(1): 013001. doi: 10.1063/5.0040607 [6] LUO H, BU K J, YIN Y F, et al. Anomalous charge transfer from organic ligands to metal halides in zero-dimensional [(C6H5)4P]2SbCl5 enabled by pressure-induced lone pair-π interaction [J]. Angewandte Chemie International Edition, 2023, 62(37): e202304494. doi: 10.1002/anie.202304494 [7] LV X J, STOUMPOS C, HU Q Y, et al. Regulating off-centering distortion maximizes photoluminescence in halide perovskites [J]. National Science Review, 2021, 8(9): nwaa288. doi: 10.1093/nsr/nwaa288 [8] BHATTACHARYYA P, CHEN W H, HUANG X L, et al. Imaging the Meissner effect and flux trapping in a hydride superconductor at megabar pressures using a nanoscale quantum sensor [EB/OL]. arXiv: 2306.03122. (2023-06-05) [2023-10-10]. https://arxiv.org/abs/2306.03122. [9] HUANG X L, WANG X, DUAN D F, et al. High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility [J]. National Science Review, 2019, 6(4): 713–718. doi: 10.1093/nsr/nwz061 [10] HSIEH S, BHATTACHARYYA P, ZU C, et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor [J]. Science, 2019, 366(6471): 1349–1354. doi: 10.1126/science.aaw4352 [11] YIP K Y, HO K O, YU K Y, et al. Measuring magnetic field texture in correlated electron systems under extreme conditions [J]. Science, 2019, 366(6471): 1355–1359. doi: 10.1126/science.aaw4278 [12] LESIK M, PLISSON T, TORAILLE L, et al. Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers [J]. Science, 2019, 366(6471): 1359–1362. doi: 10.1126/science.aaw4329 [13] SHANG Y X, HONG F, DAI J H, et al. Magnetic sensing inside a diamond anvil cell via nitrogen-vacancy center spins [J]. Chinese Physics Letters, 2019, 36(8): 086201. doi: 10.1088/0256-307X/36/8/086201 [14] 彭世杰, 刘颖, 马文超, 等. 基于金刚石氮-空位色心的精密磁测量 [J]. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084PENG S J, LIU Y, MA W C, et al. High-resolution magnetometry based on nitrogen-vacancy centers in diamond [J]. Acta Physica Sinica, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084 [15] ACOSTA V M, BAUCH E, LEDBETTER M P, et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond [J]. Physical Review Letters, 2010, 104(7): 070801. doi: 10.1103/PhysRevLett.104.070801 [16] CHRISTLE D J, KLIMOV P V, DE LAS CASAS C F, et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface [J]. Physical Review X, 2017, 7(2): 021046. [17] CHRISTLE D J, FALK A L, ANDRICH P, et al. Isolated electron spins in silicon carbide with millisecond coherence times [J]. Nature Materials, 2015, 14(2): 160–163. [18] WIDMANN M, LEE S Y, RENDLER T, et al. Coherent control of single spins in silicon carbide at room temperature [J]. Nature Materials, 2015, 14(2): 164–168. doi: 10.1038/nmat4145 [19] KOEHL W F, BUCKLEY B B, HEREMANS F J, et al. Room temperature coherent control of defect spin qubits in silicon carbide [J]. Nature, 2011, 479(7371): 84–87. doi: 10.1038/nature10562 [20] ZARGALEH S A, VON BARDELEBEN H J, CANTIN J L, et al. Electron paramagnetic resonance tagged high-resolution excitation spectroscopy of NV-centers in 4H-SiC [J]. Physical Review B, 2018, 98(21): 214113. doi: 10.1103/PhysRevB.98.214113 [21] WOLFOWICZ G, ANDERSON C P, DILER B, et al. Vanadium spin qubits as telecom quantum emitters in silicon carbide [J]. Science Advances, 2020, 6(18): eaaz1192. [22] GRUBER A, DRÄBENSTEDT A, TIETZ C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers [J]. Science, 1997, 276(5321): 2012–2014. doi: 10.1126/science.276.5321.2012 [23] DOHERTY M W, STRUZHKIN V V, SIMPSON D A, et al. Electronic properties and metrology applications of the diamond NV- center under pressure [J]. Physical Review Letters, 2014, 112(4): 047601. doi: 10.1103/PhysRevLett.112.047601 [24] WANG J F, LIU L, LIU X D, et al. Magnetic detection under high pressures using designed silicon vacancy centres in silicon carbide [J]. Nature Materials, 2023, 22(4): 489–494. doi: 10.1038/s41563-023-01477-5 [25] ANISIMOV A N, SIMIN D, SOLTAMOV V A, et al. Optical thermometry based on level anticrossing in silicon carbide [J]. Scientific Reports, 2016, 6(1): 33301. doi: 10.1038/srep33301 [26] FALK A L, BUCKLEY B B, CALUSINE G, et al. Polytype control of spin qubits in silicon carbide [J]. Nature Communications, 2013, 4(1): 1819. doi: 10.1038/ncomms2854 [27] LIU L, WANG J F, LIU X D, et al. Coherent control and magnetic detection of divacancy spins in silicon carbide at high pressures [J]. Nano Letters, 2022, 22(24): 9943–9950. doi: 10.1021/acs.nanolett.2c03378 [28] NAGY R, NIETHAMMER M, WIDMANN M, et al. High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide [J]. Nature Communications, 2019, 10(1): 1954. doi: 10.1038/s41467-019-09873-9