Synthesis of Nano-Carbon Materials by High Pressure Solid-State Topochemical Polymerization
-
摘要: 碳原子多样的杂化方式使得碳材料具有复杂的结构和性能。寻找并开发具有新结构的碳材料,实现碳材料的精准可控合成是碳材料研究的重要方向。高压(高于1 GPa)可以有效地压缩分子间距,促进不饱和分子发生聚合,为“自下而上”合成碳材料提供了新的策略与机遇。高压下的化学反应多为固相反应,反应分子受到晶格的约束,表现出拓扑化学反应的特点。这意味着可以通过控制反应物的晶体结构调控反应路线,进而合成具有特定结构和功能的碳材料。本文报道了利用高压固相拓扑聚合方法合成聚烯烃、聚炔化合物、金刚石基纳米线、碳纳米带、石墨烷以及高电荷离子型聚合物等多种碳材料的研究进展,并简要介绍高压下化学反应的特点与机制。Abstract: The various hybridization states of carbon atoms endow carbon materials with complex structures and properties. Finding and developing carbon materials with new structures and realizing accurate and controllable synthesis of carbon materials are important directions in the carbon materials research area. High pressure (above 1 GPa) can effectively reduce the intermolecular distances and promote the polymerizations of unsaturated molecules, which provides a new strategy and opportunity for “bottom-up” synthesis of carbon materials. The chemical reaction under high pressure is generally the solid phase reaction and the reaction molecules are constrained by the lattice, which shows the characteristics of topochemical reaction. This means that we can adjust the reaction routes by controlling the crystal structures of reactants to synthesize carbon materials with specific structures and functions. In this review, we report the progress in the synthesis of carbon materials by high pressure solid-state topochemical polymerization, such as polyolefin, acetylenic polymer, diamond-based carbon nanothreads, carbon nanoribbons, graphane and high-charge ionic polymers, and briefly introduce the characteristics and mechanism of chemical reaction under high pressure.
-
Nanoscale inorganic materials with unique electrical, optical and mechanical properties, which are distinct from their bulk counterparts, attract attention in both fundamental scientific research and industrial applications[1-3]. Investigations on the phase transformation and the structural stability of nanomaterials under high pressure are conducted in physics, materials science, geophysics[4-9]. Numerous studies on nanomaterials under high pressure have revealed that the grain size plays an important role in the pressure-induced phase transition behaviors. A number of interesting high-pressure behaviors and new properties in nanomaterials appear when the grain size is smaller than a critical size. Studies on CdSe, CdS, ZnO and ZnS nanocrystals observe the size-dependent phase transformations[10-13]. Lv, et al. [14] reports that the Mn3O4 nanoparticles show a different phase transformation route and a new high-pressure phase at 14.5–23.5 GPa, which has been recognized to be the orthorhombic CaTi2O4-type structure. The crystalline-amorphous transition is discovered in materials such as Y2O3, TiO2, PbTe and BaF2[15-19]. Therefore, high-pressure studies on nanomaterials are significant for the discovery of new structures and properties of materials.
Calcium fluoride (CaF2), a typical face-centered-cubic ionic crystal, has been widely used in many fields[2-3]. Due to its simple crystal structure, CaF2 becomes an ideal material for high-pressure research. High-pressure X-ray diffraction (XRD) and Raman spectroscopy studies of bulk CaF2 have shown that it undergoes two structural transitions and finally reaches highly coordinated structures. The pressure-induced phase transition from the fluorite structure (space group: Fm3m) to the α-PbCl2-type structure (space group: Pnma) has been found in the pressure range of 8–10 GPa[20-21]. Dorfman, et al.[22] have reported that bulk CaF2 transforms from the α-PbCl2-type structure into the hexagonal structure at 79 GPa and 2 000 K. Inspired by the size effect of nano-sized materials, our group has made progresses in different structural phase transitions and in the compressibility for nanosized MF2 (M=Ca, Sr, Ba) particles at high pressures[19, 23-26]. Previous high-pressure studies on the 8 nm CaF2 nanocrystals reveals that the structural phase transition from the fluorite-type structure into the orthorhombic α-PbCl2-type structure starts at 14 GPa, and the transition pressure is higher than that of the bulk CaF2[23]. Recently, we have performed high-pressure studies on the 23 nm CaF2 nanocrystals up to 23.5 GPa using synchrotron XRD measurement. We have found that the transition from the fluorite to the orthorhombic phase occurrs at 9.5 GPa, significantly lower than the transition pressure of the 8 nm CaF2 nanocrystals, but close to that of the bulk materials[24]. Further analysis indicates that the defect effect in the 23 nm CaF2 nanocrystals plays a key role in the structural stability. Nevertheless, the high pressure induced structural phase transition of the CaF2 nanocrystals with other sizes has not been reported. The phase-transition mechanism and the compressibility of the nanoscale CaF2 are still unclear. In order to further investigate the high pressure behaviors of the nanosized CaF2, and to confirm whether there is a size-dependent phase transformation at high pressure, more high pressure experimental data for various sized CaF2 nanocrystals is urgently needed.
Here we investigate the high-pressure behaviors of the CaF2 nanocrystals with an average grain size of 11 nm using in-situ XRD. We analyse the phase stability, the bulk modulus and the compressibility of the synthesized 11 nm-sized CaF2 nanocrystals in details. Through comparing the high pressure experimental data of different sized CaF2 materials, the main factor influencing the structural stability and compression properties of the CaF2 nanomaterials is explored.
1. Materials and Methods
The 11 nm-sized CaF2 nanocrystals were prepared by a typical synthesis procedure, as reported in literatures[27-28]. 2 mmol Ca(NO3)2 and 4 mmol NaF were added into a mixture which consisted of ethanol, oil acid, and sodium hydroxide. After being vigorously stirred, the white suspension was transferred into a 40 mL autoclave. The heat-treatment condition at a temperature of 160℃ was maintained for 24 h. Then, the autoclave was cooled down to room temperature, and the final products were collected after centrifugation and drying treatments.
The crystalline structure, the morphology and the particle size of the CaF2 nanocrystals were examined by XRD (D8 DISCOVER GADDS) with Cu Kα radiation (
λ =1.5418 Å) and by high-resolution transmission electron microscopy (HRTEM, H-7500). The sample was loaded into a diamond anvil cell (DAC) with a culet size of 400 μm for high-pressure analysis. The fluorescence shift of the ruby R1 line was utilized to calibrate the pressure, and an methanol-ethanol mixture with a volume ratio of 4∶1 was chosen as the pressure-transmitting medium. High-pressure XRD experiment was performed at B2 High-Pressure Station of Cornell High Energy Synchrotron Source (CHESS) with a wavelength of 0.485946 Å. MAR165 CCD detector was used to collect the XRD data. The 2D XRD images were integrated using FIT2D software. Materials Studio program was performed to refine the crystal structure using the high-pressure synchrotron XRD patterns.2. Results and Discussion
Fig.1(a) exhibits the dimension and the morphology of the synthesized CaF2 nanocrystals, and the corresponding particles’ size distribution histogram is presented in Fig.1(b). Fig.1 reveals that all the nanoparticles are well dispersed and almost sphere with an average diameter of (11 ± 2) nm. The selected-area electron diffraction (SAED) pattern (inset in Fig.1(a)) shows that the major diffraction rings of the fluorite structure, indicating that the synthezied CaF2 nanocrystals have probably the fluorite structure.
Fig.2 presents the Rietveld refinement of the diffraction pattern of the synthesized CaF2 nano-particles at ambient conditions. The great agreement between simulations and XRD experiments at ambient conditions with the residuals Rwp=7.73% and Rp=5.99% unraveled that the ambient pressure phase adopts a fluorite structure with a space group of Fm3m. The fluorite structure is constructed by the Ca atoms occupying the (0, 0, 0) positions and by the F atoms occupying the (0.25, 0.25, 0.25) positions. The cubic structure has an lattice constant of 5.461(2) Å. It is consistent with the value of a0=5.463 Å (JCPDS Card No. 35-0816).
Fig.3 displays the selected high-pressure XRD patterns of the CaF2 nanocrystals under different pressures up to 28.6 GPa. At 1.0 GPa, six diffraction peaks of (111)c, (220)c, (311)c, (400)c, (331)c and (422)c of the CaF2 nanocrystals are observed, together with one peak of the T-301 stainless steel gasket (marked by asterisk). When the pressure reaches 12 GPa, the (111) diffraction peak becomes asymmetric, and a new diffraction peak starts to appear at the right side of the (111) peak, which indicates the occurrence of a phase transition from the fluorite structure to the α-PbCl2-type structure. The transition pressure is much higher than the one reported in the bulk CaF2 materials and slightly lower than that of the 8 nm-sized CaF2 nanocrystals[23]. When the pressure increases to 20.8 GPa, all the diffraction peaks (120)o, (111)o, (121)o, (211)o, (031)o, (002)o and (240)o can be assigned to the arised high pressure phase, illustrating the completion of the phase transition. The α-PbCl2-type structure is stable up to 28.6 GPa (the highest pressure in this study). Then the sample is decompressed to ambient pressure, and it turns out that the pure high-pressure α-PbCl2-type structure is retained, which indicates the phase transformation is irreversible. Fig.4 presents the Rietveld refinement of the diffraction pattern of the CaF2 nanocrystals at ambient conditions after decompression, and it shows a quite good agreement with the α-PbCl2-type structure (with the residual Rwp=0.40 %).
Fig.5 shows the compressibility of the CaF2 nanocrystals. A third-order Birch-Murnaghan (BM) equation of state (EOS) is fitted to the experimental p-V data[29]
p=(3/2)B0[(V/V0)−7/3−(V/V0)−5/3]{1+(3/4)(B′0−4)×[(V/V0)−2/3−1]} (1) where V0 is the zero-pressure volume, V is the volume at pressure p given in GPa (V0 and V were calculated by JADE program), B0 is the isothermal bulk modulus,
B′0 is the first pressure derivative of the bulk modulus. For the CaF2 nanocrystals, the fitting yield B0 = 109(5) GPa,B′0 = 5 for the fluorite structure, and B0 = 89(1) GPa,B′0 = 4 for the α-PbCl2-type structure. The isothermal bulk modulus of the α-PbCl2-type phase is lower than that of the fluorite phase. The lower bulk modulus of the high-pressure phase of the CaF2 nanocrystals at high pressure indicates a higher compressibility. This result is consistent with the previous studies on the bulk CaF2, but it is different from the bulks SrF2 and BaF2 which have lower compressibility under high pressure[22, 30]. The bulk moduli of the 11 nm-sized CaF2 nanocrystals for the fluorite and the α-PbCl2-type structure are both significantly larger than those of the bulk CaF2[21–22] and the 23 nm-sized CaF2 nanocrystals[24], indicating a higher incompressibility for the CaF2 nanocrystals with smaller grain size. In terms of the Hall-Petch effect[31-32], a continuous decrease of grain size could further elevate material hardness, thus, the increase in bulk modulus of 11 nm-sized CaF2 nanocrystals can be easily understood.Table 1 summarizes the phase transition pressure (pT), the EOS parameters (B0 and
B′0 ) of the bulk CaF2 and the CaF2 nanocrystals with different grain sizes, which clearly reveals the differences between the bulk and the nanoscale CaF2. It is found that the phase transition pressure and the bulk modulus of the 11 nm-sized CaF2 nanocrystals are higher than those of the bulk CaF2 and the 23 nm-sized CaF2 nanocrystals. A large number of high pressure investigations indicate that many nanomaterials (e.g., CdSe, ZnS and PbS) exhibit obvious elevations of structural stability compared with their bulk materials, which is attributed to the higher surface energies in nanomaterials[10, 13, 33]. Compared with the bulk CaF2 and the 23 nm-sized CaF2 nanocrystals, a relatively higher surface energy is expected for the 11 nm-sized CaF2 nanocrystals, and thus the elevations both in the transition pressure and in the bulk modulus can be easily understood.Table 1. Transition pressure (pT ), and EOS parameters (B0 and B0 ′) of the fluorite-type and the α-PbCl2-type CaF2Besides the different high-pressure behaviors with the bulk CaF2 and the 23 nm-sized CaF2 nanocrystals, Table 1 shows that the 11 nm-sized CaF2 nanocrystals exhibit a lower transition pressure[23] and a lower bulk modulus compared with the 8 nm-sized CaF2 nanocrystals. To the best of our knowledge, defects and grain size are considered to be the main factors in influencing the high-pressure behaviors of the 11 nm-sized CaF2 nanocrystals and the 8 nm-sized CaF2 nanocrystals. For further analyses, we have carried out HRTEM measurements of many grains of the 11 nm-sized CaF2. The HRTEM image is given in Fig.6, it shows that the 11 nm-sized CaF2 nanocrystals have no visible defects and dislocations, indicating a relatively low defect concentration. Obviously, the decrease of the transition pressure in the 11 nm-sized CaF2 nanocrystals cannot be attributed to the defects (or dislocation) effect. Therefore, the differences in the phase transformations between the 11 nm and the 8 nm-sized CaF2 nanocrystals may be caused by the grain size effect. The 8 nm-sized CaF2 nanocrystals, which have a smaller grain size, possess a higher surface energy, that could result in the elevation of the phase transition pressure.
Our results illustrate that the transition pressure dramatically increases as the size of the grains decreases, and the CaF2 nanocrystals show a noticeable size-dependence of phase transformation at high pressure when the grain size below 11 nm. Therefore, it can be reasonably concluded that the critical size of the CaF2 nanocrystals, marking the oneset of nanoscal effect, is larger than 11 nm. For the 11 nm-sized CaF2 nanocrystals, the high-pressure metastable structure (α-PbCl2-type structure) is retained after the pressure is released, without observing the fluorite structure. This result is in good accordance with the oberservation for the 8 nm-sized CaF2 nanocrystals[23], but it is different with those of the bulk CaF2 and the 23 nm-sized CaF2 nanocrystals whose transformations are completely or partially reversible[21, 24]. The inreversibility of the 11 nm-sized CaF2 nanocrystals might be due to the high surface energy, which lead to the solid-solid phase transition hysteresis after decompression. Discovering novel high-pressure metastable structure is one of the main purposes of the high pressure study of the CaF2 nanocrystals.
3. Conclusions
In summary, the high-pressure behaviors of the CaF2 nanocrystals with an average grain size of 11 nm have been investigated by in-situ XRD. The phase transition from the fluorite structure to the α-PbCl2-type structure occurrs at 12 GPa, which is much higher than the value observed for the bulk CaF2 and slightly lower than that of the 8 nm-sized CaF2 nanocrystals. The bulk moduli of the CaF2 nanocrystals with the fluorite or the α-PbCl2-type structures are all larger than those of the bulk CaF2, indicating a high incompressibility of nanosized CaF2. The pure α-PbCl2-type metastable structure is retained in the 11 nm-sized CaF2 nanocrystals after decompression. Such distinct high-pressure behaviors of the 11 nm-sized CaF2 nanocrystals are considered to be mainly due to the grain size effect. When the size is below the critical size, the high surface energy begins directing the enhancement of the structural stability and the increase of the bulk modulus.
-
图 1 在0.2 GPa、99 K时乙烯Ⅰ相(P21/n,
C52h , Z = 2)的晶体结构[40](升压产生的各向异性压缩(沿b轴减小16.7%,沿a和c轴分别减小约2%)使沿a轴的最近邻分子的碳原子间距(3.527 Å)与位于晶胞顶点和中心的分子之间的碳原子间距(3.635 Å)相当)Figure 1. Crystal structure of ethylene in phase Ⅰ (P21/n,
C52h ,Z = 2) at 0.2 GPa and 99 K[40] (This anisotropic compressibility generated by increasing pressure (the cell decreases by 16.7% along the b axis and about 2% along the a and c axis respectively) makes the distances between C atoms of the nearest neighbor molecules located along the a axis (3.527 Å) comparable to those between the molecules sitting on thevertex and at the center of the cell (3.635 Å).)图 2 (a) 氘代丁炔二酸(deuterated ADCA,ADCA-d2)在8 GPa时的晶体结构[61](绿色和紫色箭头分别代表C···C间距和O···D间距);(b) 300 K、9 GPa时ADCA的分子动力学模拟结果[61];(c) 从16 GPa回收的产物的晶体结构[61]
Figure 2. (a) Crystal structure of ADCA-d2 at 8 GPa[61] ( The green and purple arrows indicate the C···C and O···D distances respectively); (b) molecular dynamics simulation of ADCA at 300 K and 9 GPa[61]; (c) crystal structure of the product recovered from 16 GPa[61]
图 6 (a) 哒嗪在0.61 GPa时的局部π堆积结构[88](dc为哒嗪环的质心距离;dp为平行平面之间的距离;Φ为哒嗪环之间的滑移角,由环的法向量和质心向量确定);(b) 哒嗪沿a轴的堆积[88];(c) 哒嗪在0 GPa、500 K下的反应示意图[88]
Figure 6. (a) π-stacking structure of pyridazine at 0.61 GPa[88], in which dc is the centroid distance between pyridazine rings, dp is the distance between parallel planes, and Φ is the slippage angle between pyridazine rings, defined by the ring normal and centroid vectors; (b) the stacking of pyridazine along a-axis[88]; (c) diagram of the reaction of pyridazine at 30 GPa and 500 K[88]
图 7 (a) s-三嗪在室温高压下的原位X射线衍射[89](D表示降压过程);(b) 在573 K、10.2 GPa下回收产物的X射线衍射图像[89];(c) s-三嗪在12.1 GPa下的晶体结构[89];(d)反应路径中各阶段的焓变(红线和黑线分别表示分步和协同反应过程)[89];(e) s-三嗪的前线分子轨道[89]
Figure 7. (a) In situ XRD of s-triazine at high pressure and room temperature[89], in which D represents the decompression process;(b) XRD of the product recovered from 573 K and 10.2 GPa[89]; (c) the crystal structure of s-triazine at 12.1 GPa[89];(d) enthalpy versus step curves of each stage in the reaction path (Red and black lines represent the stepwise and concerted process, respectively)[89]; (e) molecular orbitals of s-triazine[89]
图 11 (a) C10H8-C10F8共晶的晶体结构[94];(b) [4+2]环加成聚合路径[94];(c) “2A-tube”聚合路径[94];(d) Friedrich等[95]提出的聚合路径
Figure 11. (a) Crystal structure of C10H8-C10F8[94]; (b) the [4+2] cycloaddition polymerization path[94]; (c) “2A-tube” polymerization path[94]; (d) the polymerization path proposed by Friedrich et al.[95]
图 12 (a) DPB的反应示意图(RT代表室温)[99];(b) DPB在10 GPa下的晶体结构(D1、D2、D3为原子间距)[99];(c) 相关反应的几何结构(1,4-加成反应中,R1,4′为分子间1位和4′位炔碳原子之间的距离,D为取代基团(−R)之间的距离,
φ 为单体分子在堆积方向上的倾斜角)[99] ;(d) GNR-1和GNR-2的结构模型[99]Figure 12. (a) Reaction diagram of DPB, in which RT represents room temperature[99]; (b) crystal structure of DPB at 10 GPa, in which D1、D2、D3 are the distances between atoms[99]; (c) geometric structures of the relevant reactions ( In 1,4-addition reaction, R1,4′ is the intermolecular distance between 1 and 4′ alkynyl carbon atoms, D is the distance between the substituent groups (−R), and
φ is the tilt angle of the monomer molecules in the stacking direction.)[99] ; (d) structural models of GNR-1 and GNR-2[99]图 14 (a) 常压室温下偶氮苯的晶体结构[105];(b) 17.1 GPa时A层和B层中偶氮苯分子之间的距离[105](C1、C2′、C3、C4、C5、C6′、N1′、N2′为原子序号);(c) A层偶氮苯通过HDA反应生成CNR-A和B层偶氮苯通过对聚反应生成CNR-B[105];(d) 聚偶氮苯的晶体结构[105]
Figure 14. (a) Crystal structure of azobenzene at atmospheric pressure and room temperature[105]; (b) the distance between azobenzene molecules in A and B layers at 17.1 GPa[105], in which C1, C2′, C3, C4, C5, C6′, N1′ and N2′ are atom numbers ; (c) the A-layer azobenzene forms CNR-A by HDA reaction and the B-layer azobenzene forms CNR-B by para-polymerization reaction[105] ; (d) crystal structure of polyazobenzene[105]
图 15 (a) 通过高分辨气相色谱-质谱联用技术在25 GPa回收的聚偶氮苯中检测到的主要低聚物及其含量[105];(b)同位素标记的低聚物的质谱和相应的分子结构(t代表保留时间)[105];(c) 通过高分辨气相色谱-质谱联用技术在物质的量的比为1∶1的C12H10N2-C12D10N2混合物的聚合产物中检测到H和D共标记的低聚物以及这些化合物与CNR-A/CNR-B的关系[105]
Figure 15. (a) The main oligomers and their contents detected by HRGC-MS in polyazobenzene recovered from 25 GPa[105]; (b) mass spectrum and corresponding molecular structures of isotopically labeled oligomers (t represents retention time)[105]; (c) H and Dcolabeled oligomers detected by HRGC-MS in the polymerization products of mixture of C12H10N2-C12D10N2with a molar ratio of 1∶1 and the relationship between these compounds and CNR-A/CNR-B[105]
图 16 (a) 5.7 GPa下乙炔的晶体结构[109];(b) 10 GPa时顺式聚乙炔聚合成石墨烷的分子动力学模拟(PA代表顺式聚乙炔,PA后的数字代表计算的代数,10 GPa-PA-1代表10 GPa时计算得到的顺式聚乙炔结构)[109];(c) 样品P2的固态核磁共振[109];(d) 氘代样品P2的中子对分布函数的实验数据和动力学模拟的结构模型的对分布函数计算结果[109]
Figure 16. (a) Crystal structure of ethyne at 5.7 GPa[109]; (b) meta-dynamic simulation of the polymerization of cis-polyacetylene into graphane at 10 GPa (PA represents cis-PA, and the numbers following PA are the generation numbers. 10 GPa-PA-1 is the structure of cis-polyacetylene calculated at 10 GPa.)[109]; (c) solid-state NMR of sample P2[109]; (d) the neutron pair distribution function (PDF) experiment data of deuterated sample P2 and the calculated PDF of selected structural models of the dynamic simulations[109]
图 18 (a) 原料CaC2以及通过巴黎-爱丁堡压机在26 GPa下合成的聚合产物的水解产物总离子色谱[118];(b) 30 GPa时分子动力学模拟的CaC2结构[118]
Figure 18. (a) Total ion chromatography of the raw material CaC2 and the hydrolysis products of polymerization product synthesized by the Paris-Edinburgh cell at 26 GPa[118]; (b) structure of CaC2 simulated by meta-dynamics at 30 GPa[118]
图 19 (a) 高压下Li2C2的相变及反应过程[119];(b) Li2C2在高压下的理论和实验红外光谱[119];(c) 水解产物中各种碳氢化合物的相对含量以及化学计量比[119]
Figure 19. (a) Phase transition and reaction process of Li2C2 under high pressure[119]; (b) theoretical and experimental infrared spectra of Li2C2 under high pressure[119]; (c) relative content and stoichiometry of hydrocarbons in the hydrolysis product[119]
图 20 (a) 准谐波近似(quasi-harmonic approximation ,QHA)理论计算得到的Li-C相图[122](nLi/(nLi+nC)表示Li在Li-C化合物中的比例);Li2C2在(b) 27.5GPa和(c) 36.5 GPa下的高温原位X射线粉末衍射谱[122];(d) 27.5 GPa、1696 K时LiC2和(e) 36.5 GPa、2010 K时Li3C4的Rietveld精修结果[122]
Figure 20. (a) Phase diagrams of Li-C calculated by quasi-harmonic approximation (QHA)[122], in which nLi/(nLi+nC) represents the proportion of Li in Li-C compound; in situ high temperature X-ray powder diffraction pattern of Li2C2 at (b) 27.5 GPa and(c) 36.5 GPa[122]; rietveld refinement results of (d) LiC2 at 27.5 GPa, 1696 K and (e) Li3C4 at 36.5 GPa, 2010 K[122]
图 21 (a) NaC2H的高压反应示意图[123];(b) 临界压力下NaC2H的晶体结构(d1、d2、d3为原子间距[123]);(c)空气、NaC2H以及20 GPa下回收样品的水解产物的总离子色谱、各组分的百分比以及与NIST谱的对比[123](m/z代表质荷比);(d) 二聚及后续H转移过程的反应路线[123]
Figure 21. (a) Diagram of high-pressure reaction of NaC2H[123]; (b) the crystal structure of NaC2H under critical pressure[123], in which d1, d2, d3 are the distances between atoms; (c) total ion chromatography, percentages of each component and comparison with NIST spectrometry of air, raw materials and hydrolysates of samples recovered from 20 GPa[123], in which m/z represents mass-to-charge ratio; (d) reaction route of dimerization and subsequent H-transfer process[123]
图 22 (a) 高压下 K3Fe(CN)6的晶格参数[131]; (b) 1.7 GPa(左)和4.4 GPa(右)时K3Fe(CN)6的晶体结构和
Fe(CN)3−6 的局部结构[133];(c) 高压下K3Fe(CN)6的相变和化学反应过程[133]Figure 22. (a) Lattice parameters of K3Fe(CN)6 under high pressure[131]; (b) the crystal structure of K3Fe(CN)6 and local structure of
Fe(CN)3−6 at 1.7 GPa (left) and 4.4 GPa (right)[133]; (c) phase transition and chemical reaction process of K3Fe(CN)6 under high pressure[133]图 24 (a) 20.6 GPa时CD3CN的晶体结构模型以及可能的氢转移路线[141](C1、C2、D1、D2为原子序号);(b) 通过分子动力学计算得到的35 GPa时乙腈的反应过程[141];(c) 乙腈在高压下的相变及聚合的示意图[141]
Figure 24. (a) The crystal structure model of CD3CN at 20.6 GPa and possible H-transfer routes[141], in which C1, C2, D1, D2 are atom numbers; (b) the possible reaction process of acetonitrile at 35 GPa calculated by meta-dynamics[141]; (c) diagram of phase transition and polymerization of acetonitrile under high pressure[141]
图 25 (a) 2-丁炔在高压下的氢转移过程(d1为原子间距)[142];(b)密度泛函理论计算优化后的12.2 GPa时2-丁炔的晶体结构[142];(c) 化学键和弱相互作用的相互作用区域指示函数(interaction region indication,IRI)研究[142],IRI为1.1;(d) NEB计算中2-丁炔沿d1的氢转移过程[142](C1、C1′、C2、C2′、H、H′为原子序号,NICS(1)_ZZ表示在6元环过渡态质心上方1 Å处环平面法向上的NICS投影)
Figure 25. (a) Hydrogen transfer diagram of 2-butylene[142], in which d1 is the distance between atoms; (b) the crystal structure of2-butylene at 12.2 GPa after DFT optimization[142]; (c) interaction region indication (IRI) study of chemical bonds and weak interactions[142], IRI equivalent is 1.1; (d) hydrogen transfer process of 2-butylene along d1 in NEB calculation[142] ( C1, C1′, C2, C2′, H and H′ are atom numbers. NICS(1)_ZZ represents NICS projection on the normal vector of the ring plane of the atom at 1 Å above mass center of the 6-member ring intermediate state.)
表 1 不同反应体系中压力诱导聚合的分子间阈值距离
Table 1. Intermolecular threshold distances for pressure induced polymerization of different molecules
Molecules d(C∙∙∙C)min/Å Reaction pressure/GPa Functional group Acetylene[109] 3.1 5.7 Alkynyl Acetylenedicarboxylic acid[61] 3.1 8 Alkynyl Monosodium acetylide[123] 2.9 14 Alkynyl Calcium acetylide[118] 2.9 20 Alkynyl Benzene[37] 2.8 18 Phenyl Benzene-hexafluorobenzene cocrystal[111] 2.8 20 Phenyl 2,5-furandicarboxylic acid[93] 2.8 11 Furan Azobenzene-layer B[105] 3.18 18 Phenyl Azobenzene-layer A[105] 3.0 18 Azo, phenyl 1,4-diphenylbutadiyne[99] 3.2 10 Alkynyl, phenyl 1,3,5-triethynylbenzene[100] 3.4 4 Alkynyl, phenyl -
[1] HAN M Y, ÖZYILMAZ B, ZHANG Y B, et al. Energy band-gap engineering of graphene nanoribbons [J]. Physical Review Letters, 2007, 98(20): 206805. doi: 10.1103/PhysRevLett.98.206805 [2] TAPASZTÓ L, DOBRIK G, LAMBIN P, et al. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography [J]. Nature Nanotechnology, 2008, 3(7): 397–401. doi: 10.1038/nnano.2008.149 [3] KOSYNKIN D V, HIGGINBOTHAM A L, SINITSKII A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature, 2009, 458(7240): 872–876. doi: 10.1038/nature07872 [4] JIAO L Y, ZHANG L, WANG X R, et al. Narrow graphene nanoribbons from carbon nanotubes [J]. Nature, 2009, 458(7240): 877–880. doi: 10.1038/nature07919 [5] NARITA A, FENG X L, MÜLLEN K. Bottom-up synthesis of chemically precise graphene nanoribbons [J]. The Chemical Record, 2015, 15(1): 295–309. doi: 10.1002/tcr.201402082 [6] YANG X Y, DOU X, ROUHANIPOUR A, et al. Two-dimensional graphene nanoribbons [J]. Journal of the American Chemical Society, 2008, 130(13): 4216–4217. doi: 10.1021/ja710234t [7] SCHWAB M G, NARITA A, HERNANDEZ Y, et al. Structurally defined graphene nanoribbons with high lateral extension [J]. Journal of the American Chemical Society, 2012, 134(44): 18169–18172. doi: 10.1021/ja307697j [8] WU J S, GHERGHEL L, WATSON M D, et al. From branched polyphenylenes to graphite ribbons [J]. Macromolecules, 2003, 36(19): 7082–7089. doi: 10.1021/ma0257752 [9] YANO Y, MITOMA N, ITO H, et al. A quest for structurally uniform graphene nanoribbons: synthesis, properties, and applications [J]. The Journal of Organic Chemistry, 2020, 85(1): 4–33. doi: 10.1021/acs.joc.9b02814 [10] BUNDY F, HALL H T, STRONG H M, et al. Man-made diamonds [J]. Nature, 1955, 176(4471): 51–55. doi: 10.1038/176051a0 [11] BUNDY F P. Direct conversion of graphite to diamond in static pressure apparatus [J]. Science, 1962, 137(3535): 1057–1058. doi: 10.1126/science.137.3535.1057 [12] IRIFUNE T, KURIO A, SAKAMOTO S, et al. Ultrahard polycrystalline diamond from graphite [J]. Nature, 2003, 421(6923): 599–600. doi: 10.1038/421599b [13] BUNDY F P, KASPER J S. Hexagonal diamond-a new form of carbon [J]. The Journal of Chemical Physics, 1967, 46(9): 3437–3446. doi: 10.1063/1.1841236 [14] HUANG Q, YU D L, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510(7504): 250–253. doi: 10.1038/nature13381 [15] LUO K, LIU B, HU W T, et al. Coherent interfaces govern direct transformation from graphite to diamond [J]. Nature, 2022, 607(7919): 486–491. doi: 10.1038/s41586-022-04863-2 [16] UTSUMI W, YAGI T. Light-transparent phase formed by room-temperature compression of graphite [J]. Science, 1991, 252(5012): 1542–1544. doi: 10.1126/science.252.5012.1542 [17] DONG J J, YAO Z, YAO M G, et al. Decompression-induced diamond formation from graphite sheared under pressure [J]. Physical Review Letters, 2020, 124(6): 065701. doi: 10.1103/PhysRevLett.124.065701 [18] YAGI T, UTSUMI W, YAMAKATA M A, et al. High-pressure in situ X-ray-diffraction study of the phase transformation from graphite to hexagonal diamond at room temperature [J]. Physical Review B, 1992, 46(10): 6031–6039. doi: 10.1103/PhysRevB.46.6031 [19] TAKANO K J, HARASHIMA H H H, WAKATSUKI M W M. New high-pressure phases of carbon [J]. Japanese Journal of Applied Physics, 1991, 30(5A): L860–L863. doi: 10.1143/JJAP.30.L860 [20] HANFLAND M, BEISTER H, SYASSEN K. Graphite under pressure: equation of state and first-order Raman modes [J]. Physical Review B, 1989, 39(17): 12598–12603. doi: 10.1103/PhysRevB.39.12598 [21] LI Q, MA Y M, OGANOV A R, et al. Superhard monoclinic polymorph of carbon [J]. Physical Review Letters, 2009, 102(17): 175506. doi: 10.1103/PhysRevLett.102.175506 [22] UMEMOTO K, WENTZCOVITCH R M, SAITO S, et al. Body-centered tetragonal C4: a viable sp3 carbon allotrope [J]. Physical Review Letters, 2010, 104(12): 125504. doi: 10.1103/PhysRevLett.104.125504 [23] WANG J T, CHEN C F, KAWAZOE Y. Low-temperature phase transformation from graphite to sp3 orthorhombic carbon [J]. Physical Review Letters, 2011, 106(7): 075501. doi: 10.1103/PhysRevLett.106.075501 [24] SHANG Y C, LIU Z D, DONG J J, et al. Ultrahard bulk amorphous carbon from collapsed fullerene [J]. Nature, 2021, 599(7886): 599–604. doi: 10.1038/s41586-021-03882-9 [25] TANG H, YUAN X H, CHENG Y, et al. Synthesis of paracrystalline diamond [J]. Nature, 2021, 599(7886): 605–610. doi: 10.1038/s41586-021-04122-w [26] 王萱, 李阔, 郑海燕, 等. 分子体系的高压化学反应 [J]. 化学通报, 2019, 82(5): 387–398. doi: 10.14159/j.cnki.0441-3776.2019.05.001WANG X, LI K, ZHENG H Y, et al. Chemical reactions of molecules under high pressure [J]. Chemistry, 2019, 82(5): 387–398. doi: 10.14159/j.cnki.0441-3776.2019.05.001 [27] BLOCK S, WEIR C E, PIERMARINI G J. Polymorphism in benzene, naphthalene, and anthracene at high pressure [J]. Science, 1970, 169(3945): 586–587. doi: 10.1126/science.169.3945.586 [28] AKELLA J, KENNEDY G C. Phase diagram of benzene to 35 kbar [J]. The Journal of Chemical Physics, 1971, 55(2): 793–796. doi: 10.1063/1.1676145 [29] THIÉRY M M, LÉGER J M. High pressure solid phases of benzene. Ⅰ. Raman and X-ray studies of C6H6 at 294 K up to 25 GPa [J]. The Journal of Chemical Physics, 1988, 89(7): 4255–4271. doi: 10.1063/1.454809 [30] CANSELL F, FABRE D, PETITET J P. Phase transitions and chemical transformations of benzene up to 550 ℃ and 30 GPa [J]. The Journal of Chemical Physics, 1993, 99(10): 7300–7304. doi: 10.1063/1.465711 [31] CIABINI L, SANTORO M, BINI R, et al. High pressure crystal phases of benzene probed by infrared spectroscopy [J]. The Journal of Chemical Physics, 2001, 115(8): 3742–3749. doi: 10.1063/1.1388543 [32] CIABINI L, GORELLI F A, SANTORO M, et al. High-pressure and high-temperature equation of state and phase diagram of solid benzene [J]. Physical Review B, 2005, 72(9): 094108. doi: 10.1103/PhysRevB.72.094108 [33] PRUZAN P, CHERVIN J C, THIÉRY M M, et al. Transformation of benzene to a polymer after static pressurization to 30 GPa [J]. The Journal of Chemical Physics, 1990, 92(11): 6910–6915. doi: 10.1063/1.458278 [34] CIABINI L, SANTORO M, BINI R, et al. High pressure reactivity of solid benzene probed by infrared spectroscopy [J]. The Journal of Chemical Physics, 2002, 116(7): 2928–2935. doi: 10.1063/1.1435570 [35] JACKSON B R, TROUT C C, BADDING J V. UV Raman analysis of the C: H network formed by compression of benzene [J]. Chemistry of Materials, 2003, 15(9): 1820–1824. doi: 10.1021/cm021009y [36] CIABINI L, SANTORO M, BINI R, et al. High pressure photoinduced ring opening of benzene [J]. Physical Review Letters, 2002, 88(8): 085505. doi: 10.1103/PhysRevLett.88.085505 [37] FITZGIBBONS T C, GUTHRIE M, XU E S, et al. Benzene-derived carbon nanothreads [J]. Nature Materials, 2015, 14(1): 43–47. doi: 10.1038/nmat4088 [38] YANG X, WANG X, WANG Y D, et al. From molecules to carbon materials: high pressure induced polymerization and bonding mechanisms of unsaturated compounds [J]. Crystals, 2019, 9(10): 490. doi: 10.3390/cryst9100490 [39] WIELDRAAIJER H, SCHOUTEN J A, TRAPPENIERS N J. Investigation of the phase diagrams of ethane, ethylene, and methane at high pressures [J]. High Temperatures High Pressures, 1983, 15(1): 87–92. [40] CHELAZZI D, CEPPATELLI M, SANTORO M, et al. Pressure-induced polymerization in solid ethylene [J]. The Journal of Physical Chemistry B, 2005, 109(46): 21658–21663. doi: 10.1021/jp0536495 [41] CHELAZZI D, CEPPATELLI M, SANTORO M, et al. High-pressure synthesis of crystalline polyethylene using optical catalysis [J]. Nature Materials, 2004, 3(7): 470–475. doi: 10.1038/nmat1147 [42] BENSON S W. Mechanism of the Diels-Alder reactions of butadiene [J]. The Journal of Chemical Physics, 1967, 46(12): 4920–4926. doi: 10.1063/1.1840657 [43] MILLER G H. Thermal polymerization of butadiene to solid polymer [J]. Journal of Polymer Science, 1960, 43(142): 517–525. doi: 10.1002/pol.1960.1204314221 [44] CITRONI M, CEPPATELLI M, BINI R, et al. The high-pressure chemistry of butadiene crystal [J]. The Journal of Chemical Physics, 2003, 118(4): 1815–1820. doi: 10.1063/1.1530163 [45] CITRONI M, CEPPATELLI M, BINI R, et al. Laser-induced selectivity for dimerization versus polymerization of butadiene under pressure [J]. Science, 2002, 295(5562): 2058–2060. doi: 10.1126/science.1068451 [46] WIBERG K B, HADAD C M, ELLISON G B, et al. Butadiene. 3. Charge distribution in electronically excited states [J]. The Journal of Physical Chemistry, 1993, 97(51): 13586–13597. doi: 10.1021/j100153a028 [47] DOERING J P, MCDIARMID R. Electron impact study of the energy levels of trans-1,3-butadiene: Ⅱ. detailed analysis of valence and Rydberg transitions [J]. The Journal of Chemical Physics, 1980, 73(8): 3617–3624. doi: 10.1063/1.440587 [48] CHADWICK R R, ZGIERSKI M Z, HUDSON B S. Resonance Raman scattering of butadiene: vibronic activity of a bu mode demonstrates the presence of a 1 Ag symmetry excited electronic state at low energy [J]. The Journal of Chemical Physics, 1991, 95(10): 7204–7211. doi: 10.1063/1.461397 [49] AOYAGI M, OSAMURA Y, IWATA S. An MCSCF study of the low-lying states of trans-butadiene [J]. The Journal of Chemical Physics, 1985, 83(3): 1140–1148. doi: 10.1063/1.449477 [50] AOYAGI M, OSAMURA Y. A theoretical study of the potential energy surface of butadiene in the excited states [J]. Journal of the American Chemical Society, 1989, 111(2): 470–474. doi: 10.1021/ja00184a010 [51] CHIANG C K, GAU S C, FINCHER JR C R, et al. Polyacetylene, (CH) x : n-type and p-type doping and compensation [J]. Applied Physics Letters, 1978, 33(1): 18–20. doi: 10.1063/1.90166 [52] MACDIARMID A G, HEEGER A J. Organic metals and semiconductors: the chemistry of polyacetylene, (CH) x , and its derivatives [J]. Synthetic Metals, 1980, 1(2): 101–118. doi: 10.1016/0379-6779(80)90002-8 [53] WARD M D, HUANG H T, ZHU L, et al. High-pressure behavior of C2I2 and polymerization to a conductive polymer [J]. The Journal of Physical Chemistry C, 2019, 123(18): 11369–11377. doi: 10.1021/acs.jpcc.8b12161 [54] MASUDA T. Substituted polyacetylenes: synthesis, properties, and functions [J]. Polymer Reviews, 2017, 57(1): 1–14. doi: 10.1080/15583724.2016.1170701 [55] SAITO M A, MAEDA K, ONOUCHI H, et al. Synthesis and macromolecular helicity induction of a stereoregular polyacetylene bearing a carboxy group with natural amino acids in water [J]. Macromolecules, 2000, 33(13): 4616–4618. doi: 10.1021/ma000484j [56] MAEDA K, GOTO H, YASHIMA E. Stereospecific polymerization of propiolic acid with rhodium complexes in the presence of bases and helix induction on the polymer in water [J]. Macromolecules, 2001, 34(5): 1160–1164. doi: 10.1021/ma001651i [57] LAM J W Y, LUO J D, DONG Y P, et al. Functional polyacetylenes: synthesis, thermal stability, liquid crystallinity, and light emission of polypropiolates [J]. Macromolecules, 2002, 35(22): 8288–8299. doi: 10.1021/ma021011a [58] KISHIMOTO Y, ECKERLE P, MIYATAKE T, et al. Well-controlled polymerization of phenylacetylenes with organorhodium (Ⅰ) complexes: mechanism and structure of the polyenes [J]. Journal of the American Chemical Society, 1999, 121(51): 12035–12044. doi: 10.1021/ja991903z [59] MASUDA T, KAWAI M, HIGASHIMURA T. Polymerization of propiolic acid and its derivatives catalysed by MoCl5 [J]. Polymer, 1982, 23(5): 744–747. doi: 10.1016/0032-3861(82)90062-3 [60] USANMAZ A, ALTÜRK E. Radiation induced solid-state polymerization of acetylenedicarboxylic acid [J]. Journal of Macromolecular Science, Part A, 2002, 39(5): 379–395. doi: 10.1081/MA-120003958 [61] WANG X, TANG X Y, ZHANG P J, et al. Crystalline fully carboxylated polyacetylene obtained under high pressure as a Li-ion battery anode material [J]. The Journal of Physical Chemistry Letters, 2021, 12(50): 12055–12061. doi: 10.1021/acs.jpclett.1c03734 [62] STOJKOVIC D, ZHANG P H, CRESPI V H. Smallest nanotube: breaking the symmetry of sp3 bonds in tubular geometries [J]. [J]. Physical Review Letters, 2001, 87(12): 125502. doi: 10.1103/PhysRevLett.87.125502 [63] WEN X D, HOFFMANN R, ASHCROFT N W. Benzene under high pressure: a story of molecular crystals transforming to saturated networks, with a possible intermediate metallic phase [J]. Journal of the American Chemical Society, 2011, 133(23): 9023–9035. doi: 10.1021/ja201786y [64] OLBRICH M, MAYER P, TRAUNER D. A step toward polytwistane: synthesis and characterization of C2-symmetric tritwistane [J]. Organic & Biomolecular Chemistry, 2014, 12(1): 108–112. doi: 10.1039/C3OB42152J [65] BARUA S R, QUANZ H, OLBRICH M, et al. Polytwistane [J]. Chemistry–A European Journal, 2014, 20(6): 1638–1645. doi: 10.1002/chem.201303081 [66] LI X, BALDINI M, WANG T, et al. Mechanochemical synthesis of carbon nanothread single crystals [J]. Journal of the American Chemical Society, 2017, 139(45): 16343–16349. doi: 10.1021/jacs.7b09311 [67] MARYASIN B, OLBRICH M, TRAUNER D, et al. Calculated nuclear magnetic resonance spectra of polytwistane and related hydrocarbon nanorods [J]. Journal of Chemical Theory and Computation, 2015, 11(3): 1020–1026. doi: 10.1021/ct5011505 [68] DUAN P, LI X, WANG T, et al. The chemical structure of carbon nanothreads analyzed by advanced solid-state NMR [J]. Journal of the American Chemical Society, 2018, 140(24): 7658–7666. doi: 10.1021/jacs.8b03733 [69] WANG T, DUAN P, XU E S, et al. Constraining carbon nanothread structures by experimental and calculated nuclear magnetic resonance spectra [J]. Nano Letters, 2018, 18(8): 4934–4942. doi: 10.1021/acs.nanolett.8b01736 [70] JUHL S J, WANG T, VERMILYEA B, et al. Local structure and bonding of carbon nanothreads probed by high-resolution transmission electron microscopy [J]. Journal of the American Chemical Society, 2019, 141(17): 6937–6945. doi: 10.1021/jacs.8b13405 [71] XU E S, LAMMERT P E, CRESPI V H. Systematic enumeration of sp3 nanothreads [J]. Nano Letters, 2015, 15(8): 5124–5130. doi: 10.1021/acs.nanolett.5b01343 [72] CHEN B, HOFFMANN R, ASHCROFT N W, et al. Linearly polymerized benzene arrays as intermediates, tracing pathways to carbon nanothreads [J]. Journal of the American Chemical Society, 2015, 137(45): 14373–14386. doi: 10.1021/jacs.5b09053 [73] ROMAN R E, KWAN K, CRANFORD S W. Mechanical properties and defect sensitivity of diamond nanothreads [J]. Nano Letters, 2015, 15(3): 1585–1590. doi: 10.1021/nl5041012 [74] SILVEIRA J F R V, MUNIZ A R. First-principles calculation of the mechanical properties of diamond nanothreads [J]. Carbon, 2017, 113: 260–265. doi: 10.1016/j.carbon.2016.11.060 [75] CHEN M M, XIAO J, CAO C, et al. Theoretical prediction electronic properties of Group-Ⅳ diamond nanothreads [J]. AIP Advances, 2018, 8(7): 075107. doi: 10.1063/1.5040374 [76] DEMINGOS P G, MUNIZ A R. Electronic and mechanical properties of partially saturated carbon and carbon nitride nanothreads [J]. The Journal of Physical Chemistry C, 2019, 123(6): 3886–3891. doi: 10.1021/acs.jpcc.8b11329 [77] SILVEIRA J F R V, MUNIZ A R. Functionalized diamond nanothreads from benzene derivatives [J]. Physical Chemistry Chemical Physics, 2017, 19(10): 7132–7137. doi: 10.1039/C6CP08655A [78] ZHURAVLEV K K, TRAIKOV K, DONG Z H, et al. Raman and infrared spectroscopy of pyridine under high pressure [J]. Physical Review B, 2010, 82(6): 064116. doi: 10.1103/PhysRevB.82.064116 [79] YASUZUKA T, KOMATSU K, KAGI H. A revisit to high-pressure transitions of pyridine: a new phase transition at 5 GPa and formation of a crystalline phase over 20 GPa [J]. Chemistry Letters, 2011, 40(7): 733–735. doi: 10.1246/cl.2011.733 [80] LI X, WANG T, DUAN P, et al. Carbon nitride nanothread crystals derived from pyridine [J]. Journal of the American Chemical Society, 2018, 140(15): 4969–4972. doi: 10.1021/jacs.7b13247 [81] DAMAY F, RODRÍGUEZ-CARVAJAL J, ANDRÉ D, et al. Orientational ordering in the low-temperature stable phases of deuterated thiophene [J]. Acta Crystallographica Section B: Structural Science, 2008, 64(5): 589–595. doi: 10.1107/S0108768108015103 [82] DUNSTETTER F, ANDRÉ D, GONTHIER-VASSAL A, et al. Observation of an incommensurate phase in the stable phase sequence of deuterated thiophene by powder neutron diffraction [J]. Chemical Physics, 1993, 175(2/3): 475–482. doi: 10.1016/0301-0104(93)85174-7 [83] BISWAS A, WARD M D, WANG T, et al. Evidence for orientational order in nanothreads derived from thiophene [J]. The Journal of Physical Chemistry Letters, 2019, 10(22): 7164–7171. doi: 10.1021/acs.jpclett.9b02546 [84] CEPPATELLI M, SANTORO M, BINI R, et al. High pressure reactivity of solid furan probed by infrared and Raman spectroscopy [J]. The Journal of Chemical Physics, 2003, 118(3): 1499–1506. doi: 10.1063/1.1527895 [85] SANTORO M, CEPPATELLI M, BINI R, et al. High-pressure photochemistry of furane crystal [J]. The Journal of Chemical Physics, 2003, 118(18): 8321–8325. doi: 10.1063/1.1565997 [86] HUSS S, WU S K, CHEN B, et al. Scalable synthesis of crystalline one-dimensional carbon nanothreads through modest-pressure polymerization of furan [J]. ACS Nano, 2021, 15(3): 4134–4143. doi: 10.1021/acsnano.0c10400 [87] MATSUURA B S, HUSS S, ZHENG Z X, et al. Perfect and defective 13C-furan-derived nanothreads from modest-pressure synthesis analyzed by 13C NMR [J]. Journal of the American Chemical Society, 2021, 143(25): 9529–9542. doi: 10.1021/jacs.1c03671 [88] DUNNING S G, ZHU L, CHEN B, et al. Solid-state pathway control via reaction-directing heteroatoms: ordered pyridazine nanothreads through selective cycloaddition [J]. Journal of the American Chemical Society, 2022, 144(5): 2073–2078. doi: 10.1021/jacs.1c12143 [89] GAO D X, TANG X Y, XU J Q, et al. Crystalline C3N3H3 tube (3, 0) nanothreads [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(17): e2201165119. doi: 10.1073/pnas.2201165119 [90] WHEATLEY P J. The crystal and molecular structure of s-triazine [J]. Acta Crystallographica, 1955, 8(4): 224–226. doi: 10.1107/S0365110X55000741 [91] NOBREGA M M, TEMPERINI M L A, BINI R. Probing the chemical stability of aniline under high pressure [J]. The Journal of Physical Chemistry C, 2017, 121(13): 7495–7501. doi: 10.1021/acs.jpcc.6b12924 [92] NOBREGA M M, TEIXEIRA-NETO E, CAIRNS A B, et al. One-dimensional diamondoid polyaniline-like nanothreads from compressed crystal aniline [J]. Chemical Science, 2018, 9(1): 254–260. doi: 10.1039/C7SC03445H [93] WANG X, YANG X, WANG Y D, et al. From biomass to functional crystalline diamond nanothread: pressure-induced polymerization of 2,5-furandicarboxylic acid [J]. Journal of the American Chemical Society, 2022, 144(48): 21837–21842. doi: 10.1021/jacs.2c08914 [94] WARD M D, TANG W S, ZHU L, et al. Controlled single-crystalline polymerization of C10H8·C10F8 under pressure [J]. Macromolecules, 2019, 52(20): 7557–7563. doi: 10.1021/acs.macromol.9b01416 [95] FRIEDRICH A, COLLINGS I E, DZIUBEK K F, et al. Pressure-induced polymerization of polycyclic arene-perfluoroarene cocrystals: single crystal X-ray diffraction studies, reaction kinetics, and design of columnar hydrofluorocarbons [J]. Journal of the American Chemical Society, 2020, 142(44): 18907–18923. doi: 10.1021/jacs.0c09021 [96] JORDAN R S, WANG Y, MCCURDY R D, et al. Synthesis of graphene nanoribbons via the topochemical polymerization and subsequent aromatization of a diacetylene precursor [J]. Chem, 2016, 1(1): 78–90. doi: 10.1016/j.chempr.2016.06.010 [97] JORDAN R S, LI Y L, LIN C W, et al. Synthesis of N= 8 armchair graphene nanoribbons from four distinct polydiacetylenes [J]. Journal of the American Chemical Society, 2017, 139(44): 15878–15890. doi: 10.1021/jacs.7b08800 [98] LI Y L, ZEE C T, LIN J B, et al. Fjord-edge graphene nanoribbons with site-specific nitrogen substitution [J]. Journal of the American Chemical Society, 2020, 142(42): 18093–18102. doi: 10.1021/jacs.0c07657 [99] ZHANG P J, TANG X Y, WANG Y D, et al. Distance-selected topochemical dehydro-Diels-Alder reaction of 1,4-diphenylbutadiyne toward crystalline graphitic nanoribbons [J]. Journal of the American Chemical Society, 2020, 142(41): 17662–17669. doi: 10.1021/jacs.0c08274 [100] LI Y P, TANG X Y, ZHANG P J, et al. Scalable high-pressure synthesis of sp2–sp3 carbon nanoribbon via [4+2] polymerization of 1,3,5-triethynylbenzene [J]. The Journal of Physical Chemistry Letters, 2021, 12(30): 7140–7145. doi: 10.1021/acs.jpclett.1c01945 [101] SANTORO M, CIABINI L, BINI R, et al. High-pressure polymerization of phenylacetylene and of the benzene and acetylene moieties [J]. Journal of Raman Spectroscopy, 2003, 34(7/8): 557–566. doi: 10.1002/jrs.1024 [102] TANG W S, STROBEL T A. Evidence for functionalized carbon nanothreads from π-stacked, para-disubstituted benzenes [J]. The Journal of Physical Chemistry C, 2020, 124(45): 25062–25070. doi: 10.1021/acs.jpcc.0c06715 [103] BROWN C J. A refinement of the crystal structure of azobenzene [J]. Acta Crystallographica, 1966, 21(1): 146–152. doi: 10.1107/S0365110X66002445 [104] ROMI S, FANETTI S, ALABARSE F, et al. Synthesis of double core chromophore-functionalized nanothreads by compressing azobenzene in a diamond anvil cell [J]. Chemical Science, 2021, 12(20): 7048–7057. doi: 10.1039/D0SC06968J [105] ZHANG P J, GAO D X, TANG X Y, et al. Ordered van der Waals hetero-nanoribbon from pressure-induced topochemical polymerization of azobenzene [J]. Journal of the American Chemical Society, 2023, 145(12): 6845–6852. doi: 10.1021/jacs.2c13753 [106] SAKASHITA M, YAMAWAKI H, AOKI K. FT-IR study of the solid state polymerization of acetylene under pressure [J]. The Journal of Physical Chemistry, 1996, 100(23): 9943–9947. doi: 10.1021/jp960306l [107] CEPPATELLI M, SANTORO M, BINI R, et al. Fourier transform infrared study of the pressure and laser induced polymerization of solid acetylene [J]. The Journal of Chemical Physics, 2000, 113(14): 5991–6000. doi: 10.1063/1.1288800 [108] TROUT C C, BADDING J V. Solid state polymerization of acetylene at high pressure and low temperature [J]. The Journal of Physical Chemistry A, 2000, 104(34): 8142–8145. doi: 10.1021/jp000198+ [109] SUN J M, DONG X, WANG Y J, et al. Pressure-induced polymerization of acetylene: structure-directed stereoselectivity and a possible route to graphane [J]. Angewandte Chemie, 2017, 129(23): 6653–6657. doi: 10.1002/ange.201702685 [110] WANG Y J, WANG L J, ZHENG H Y, et al. Phase transitions and polymerization of C6H6−C6F6 cocrystal under extreme conditions [J]. The Journal of Physical Chemistry C, 2016, 120(51): 29510–29519. doi: 10.1021/acs.jpcc.6b11245 [111] WANG Y J, DONG X, TANG X Y, et al. Pressure-induced Diels-Alder reactions in C6H6−C6F6 cocrystal towards graphane structure [J]. Angewandte Chemie International Edition, 2019, 58(5): 1468–1473. doi: 10.1002/anie.201813120 [112] EFTHIMIOPOULOS I, KUNC K, VAZHENIN G V, et al. Structural transformation and vibrational properties of BaC2 at high pressure [J]. Physical Review B, 2012, 85(5): 054105. doi: 10.1103/PhysRevB.85.054105 [113] SREPUSHARAWOOT P, BLOMQVIST A, ARAÚJO C M, et al. One-dimensional polymeric carbon structure based on five-membered rings in alkaline earth metal dicarbides BeC2 and MgC2 [J]. Physical Review B, 2010, 82(12): 125439. doi: 10.1103/PhysRevB.82.125439 [114] CHEN X Q, FU C L, FRANCHINI C. Polymeric forms of carbon in dense lithium carbide [J]. Journal of Physics: Condensed Matter, 2010, 22(29): 292201. doi: 10.1088/0953-8984/22/29/292201 [115] LI Y L, LUO W, ZENG Z, et al. Pressure-induced superconductivity in CaC2 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(23): 9289–9294. doi: 10.1073/pnas.1307384110 [116] KULKARNI A, DOLL K, SCHÖN J C, et al. Global exploration of the enthalpy landscape of calcium carbide [J]. The Journal of Physical Chemistry B, 2010, 114(47): 15573–15581. doi: 10.1021/jp1028504 [117] BENSON D, LI Y L, LUO W, et al. Lithium and calcium carbides with polymeric carbon structures [J]. Inorganic Chemistry, 2013, 52(11): 6402–6406. doi: 10.1021/ic4002219 [118] ZHENG H Y, WANG L J, LI K, et al. Pressure induced polymerization of acetylide anions in CaC2 and 107 fold enhancement of electrical conductivity [J]. Chemical Science, 2017, 8(1): 298–304. doi: 10.1039/C6SC02830F [119] WANG L J, DONG X, WANG Y J, et al. Pressure-induced polymerization and disproportionation of Li2C2 accompanied with irreversible conductivity enhancement [J]. The Journal of Physical Chemistry Letters, 2017, 8(17): 4241–4245. doi: 10.1021/acs.jpclett.7b01779 [120] EFTHIMIOPOULOS I, BENSON D E, KONAR S, et al. Structural transformations of Li2C2 at high pressures [J]. Physical Review B, 2015, 92(6): 064111. doi: 10.1103/PhysRevB.92.064111 [121] LIN Y Z, STROBEL T A, COHEN R E. Structural diversity in lithium carbides [J]. Physical Review B, 2015, 92(21): 214106. doi: 10.1103/PhysRevB.92.214106 [122] DONG X, WANG L J, LI K, et al. Tailored synthesis of the narrowest zigzag graphene nanoribbon structure by compressing the lithium acetylide under high temperature [J]. The Journal of Physical Chemistry C, 2018, 122(35): 20506–20512. doi: 10.1021/acs.jpcc.8b04081 [123] HAN J, TANG X Y, WANG Y D, et al. Pressure-induced polymerization of monosodium acetylide: a radical reaction initiated topochemically [J]. The Journal of Physical Chemistry C, 2019, 123(50): 30746–30753. doi: 10.1021/acs.jpcc.9b09698 [124] CHEN J Y, YOO C S. Physical and chemical transformations of sodium cyanide at high pressures [J]. The Journal of Chemical Physics, 2009, 131(14): 144507. doi: 10.1063/1.3245861 [125] HECKATHORN J W, KRUGER M B, GERLICH D, et al. High-pressure behavior of the alkali cyanides KCN and NaCN [J]. Physical Review B, 1999, 60(2): 979–983. doi: 10.1103/PhysRevB.60.979 [126] STRÖSSNER K, HOCHHEIMER H D, HÖNLE W, et al. High-pressure Raman and X-ray studies of the alkali cyanides up to 27 GPa [J]. The Journal of Chemical Physics, 1985, 83(5): 2435–2440. doi: 10.1063/1.449289 [127] CATAFESTA J, HAINES J, ZORZI J E, et al. Pressure-induced amorphization and decomposition of Fe[Co(CN)6] [J]. Physical Review B, 2008, 77(6): 064104. doi: 10.1103/PhysRevB.77.064104 [128] LIU X J, MORITOMO Y, MATSUDA T, et al. Pressure-induced octahedral rotation in RbMn[Fe(CN)6] [J]. Journal of the Physical Society of Japan, 2009, 78(1): 013602. doi: 10.1143/JPSJ.78.013602 [129] MATSUDA T, LIU X J, SHIBATA T, et al. Pressure-induced phase transition in Zn-Fe prussian blue lattice [J]. Journal of the Physical Society of Japan, 2009, 78(10): 105002. doi: 10.1143/JPSJ.78.105002 [130] MORITOMO Y, HANAWA M, OHISHI Y, et al. Pressure and photoinduced transformation into a metastable phase in RbMn[Fe(CN)6] [J]. Physical Review B, 2003, 68(14): 144106. doi: 10.1103/PhysRevB.68.144106 [131] LI K, ZHENG H Y, IVANOV I N, et al. K3Fe(CN)6: pressure-induced polymerization and enhanced conductivity [J]. The Journal of Physical Chemistry C, 2013, 117(46): 24174–24180. doi: 10.1021/jp407429z [132] FIGGIS B N, SKELTON B W, WHITE A H. Crystal structures of the simple monoclinic and orthorhombic polytypes of tripotassium hexacyanoferrate (Ⅲ) [J]. Australian Journal of Chemistry, 1978, 31(6): 1195–1199. doi: 10.1071/CH9781195 [133] LI K, ZHENG H Y, WANG L J, et al. K3Fe(CN)6 under external pressure: dimerization of CN– coupled with electron transfer to Fe (Ⅲ) [J]. The Journal of Physical Chemistry C, 2015, 119(39): 22351–22356. doi: 10.1021/acs.jpcc.5b06793 [134] LI K, ZHENG H Y, HATTORI T, et al. Synthesis, structure, and pressure-induced polymerization of Li3Fe(CN)6 accompanied with enhanced conductivity [J]. Inorganic Chemistry, 2015, 54(23): 11276–11282. doi: 10.1021/acs.inorgchem.5b01851 [135] BIRADHA K, SANTRA R. Crystal engineering of topochemical solid state reactions [J]. Chemical Society Reviews, 2013, 42(3): 950–967. doi: 10.1039/C2CS35343A [136] LI F, XU J Q, WANG Y J, et al. Pressure-induced polymerization: addition and condensation reactions [J]. Molecules, 2021, 26(24): 7581. doi: 10.3390/molecules26247581 [137] TANG X Y, DONG X, ZHANG C F, et al. Triggering dynamics of acetylene topochemical polymerization [J]. Matter and Radiation at Extremes, 2023, 8(5): 058402. doi: 10.1063/5.0151609 [138] CIABINI L, SANTORO M, GORELLI F A, et al. Triggering dynamics of the high-pressure benzene amorphization [J]. Nature Materials, 2007, 6(1): 39–43. doi: 10.1038/nmat1803 [139] AOKI K, BAER B J, CYNN H C, et al. High-pressure Raman study of one-dimensional crystals of the very polar molecule hydrogen cyanide [J]. Physical Review B, 1990, 42(7): 4298–4303. doi: 10.1103/PhysRevB.42.4298 [140] SCHETTINO V, BINI R. Molecules under extreme conditions: chemical reactions at high pressure [J]. Physical Chemistry Chemical Physics, 2003, 5(10): 1951–1965. doi: 10.1039/b301381b [141] ZHENG H Y, LI K, CODY G D, et al. Polymerization of acetonitrile via a hydrogen transfer reaction from CH3 to CN under extreme conditions [J]. Angewandte Chemie International Edition, 2016, 55(39): 12040–12044. doi: 10.1002/anie.201606198 [142] ZHANG P J, TANG X Y, ZHANG C F, et al. Pressure-induced hydrogen transfer in 2-butyne via a double CH··· π aromatic transition state [J]. The Journal of Physical Chemistry Letters, 2022, 13(18): 4170–4175. doi: 10.1021/acs.jpclett.2c00877 [143] LU T, CHEN Q X. Interaction region indicator: a simple real space function clearly revealing both chemical bonds and weak interactions [J]. Chemistry Methods, 2021, 1(5): 231–239. doi: 10.1002/cmtd.202100007 [144] YANG X, LI Y P, WANG Y J, et al. Chemical transformations of n-hexane and cyclohexane under the upper mantle conditions [J]. Geoscience Frontiers, 2021, 12(2): 1010–1017. doi: 10.1016/j.gsf.2020.06.006 [145] WANG Y D, YANG X, TANG X Y, et al. Pressure gradient squeezing hydrogen out of MnOOH: thermodynamics and electrochemistry [J]. The Journal of Physical Chemistry Letters, 2021, 12(44): 10893–10898. doi: 10.1021/acs.jpclett.1c03382 [146] WANG Y D, CHE G W, YANG X, et al. Piezovoltaics from PdH x [J]. The Journal of Physical Chemistry Letters, 2023, 14(13): 3168–3173. doi: 10.1021/acs.jpclett.3c00464 -